Topological Engineering Electrodes with Ultrafast Oxygen Transport for Super-Power Sodium-Oxygen Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 14 vom: 15. Apr., Seite e2311627
1. Verfasser: Yuan, Ruoxin (VerfasserIn)
Weitere Verfasser: Tan, Chuan, Zhang, Zhuojun, Zeng, Li, Kang, Wenbin, Liu, Jingfeng, Gao, Xiangwen, Tan, Peng, Chen, Yuhui, Zhang, Chuhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D printing bio‐inspired structure gas diffusion sodium‐oxygen battery
LEADER 01000caa a22002652 4500
001 NLM36665389X
003 DE-627
005 20240405233341.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202311627  |2 doi 
028 5 2 |a pubmed24n1366.xml 
035 |a (DE-627)NLM36665389X 
035 |a (NLM)38174767 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Ruoxin  |e verfasserin  |4 aut 
245 1 0 |a Topological Engineering Electrodes with Ultrafast Oxygen Transport for Super-Power Sodium-Oxygen Batteries 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Sodium-oxygen battery has attracted tremendous interest due to its extraordinary theoretical specific energy (1605 Wh kg-1 NaO2) and appealing element abundance. However, definite mechanistic factors governing efficient oxygen diffusion and consumption inside electrolyte-flooded air cathodes remain elusive thus precluding a true gas diffusion electrode capable of high discharge current (i.e., several mA cm-2) and superior output power. Herein, 3D-printing technology is adopted to create gas channels with tailored channel size and structure to demystify the diffusion-limited oxygen delivery process. It is revealed that as the clogging discharging products increase, large channel size, and interconnected channel structure are essential to guaranteeing fast O2 diffusion. Moreover, to further encourage O2 diffusion, a bio-inspired breathable cathode with progressively branching channels that balances between O2 passage and reaction is 3D printed. This elaborated 3D electrode allows a sodium-oxygen cell to deliver an impressive discharging current density of up to 4 mA cm-2 and an output power of 8.4 mW cm-2, giving rise to an outstanding capacity of 18.4 mAh cm-2. The unraveled mystery of oxygen delivery enabled by 3D printing points to a valuable roadmap for the rational design of metal-air batteries toward practical applications 
650 4 |a Journal Article 
650 4 |a 3D printing 
650 4 |a bio‐inspired structure 
650 4 |a gas diffusion 
650 4 |a sodium‐oxygen battery 
700 1 |a Tan, Chuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhuojun  |e verfasserin  |4 aut 
700 1 |a Zeng, Li  |e verfasserin  |4 aut 
700 1 |a Kang, Wenbin  |e verfasserin  |4 aut 
700 1 |a Liu, Jingfeng  |e verfasserin  |4 aut 
700 1 |a Gao, Xiangwen  |e verfasserin  |4 aut 
700 1 |a Tan, Peng  |e verfasserin  |4 aut 
700 1 |a Chen, Yuhui  |e verfasserin  |4 aut 
700 1 |a Zhang, Chuhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 14 vom: 15. Apr., Seite e2311627  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:14  |g day:15  |g month:04  |g pages:e2311627 
856 4 0 |u http://dx.doi.org/10.1002/adma.202311627  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 14  |b 15  |c 04  |h e2311627