Constructing Ultra-Shallow Near-Edge States for Efficient and Stable Perovskite Solar Cells

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 15 vom: 04. Apr., Seite e2309487
1. Verfasser: Zhu, Xueliang (VerfasserIn)
Weitere Verfasser: Xiong, Wenqi, Hu, Chong, Mo, Kangwei, Yang, Man, Li, Yanyan, Li, Ruiming, Shen, Chen, Liu, Yong, Liu, Xiaoze, Wang, Sheng, Lin, Qianqian, Yuan, Shengjun, Liu, Zhengyou, Wang, Zhiping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article band structure engineering carrier lifetime density function theory calculations doping perovskite solar cells
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Electronic band structure engineering of metal-halide perovskites (MHP) lies at the core of fundamental materials research and photovoltaic applications. However, reconfiguring the band structures in MHP for optimized electronic properties remains challenging. This article reports a generic strategy for constructing near-edge states to improve carrier properties, leading to enhanced device performances. The near-edge states are designed around the valence band edge using theoretical prediction and constructed through tailored material engineering. These states are experimentally revealed with activation energies of around 23 milli-electron volts by temperature-dependent time-resolved spectroscopy. Such small activation energies enable prolonged carrier lifetime with efficient carrier transition dynamics and low non-radiative recombination losses, as corroborated by the millisecond lifetimes of microwave conductivity. By constructing near-edge states in positive-intrinsic-negative inverted cells, a champion efficiency of 25.4% (25.0% certified) for a 0.07-cm2 cell and 23.6% (22.7% certified) for a 1-cm2 cell is achieved. The most stable encapsulated cell retains 90% of its initial efficiency after 1100 h of maximum power point tracking under one sun illumination (100 mW cm-2) at 65 °C in ambient air
Beschreibung:Date Revised 11.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202309487