Ultrastrong and High Thermal Insulating Porous High-Entropy Ceramics up to 2000 °C
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 14 vom: 02. Apr., Seite e2311870 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article compressive strength high‐entropy diborides high‐temperature behaviors porous materials thermal conductivity |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. High mechanical load-carrying capability and thermal insulating performance are crucial to thermal-insulation materials under extreme conditions. However, these features are often difficult to achieve simultaneously in conventional porous ceramics. Here, for the first time, it is reported a multiscale structure design and fast fabrication of 9-cation porous high-entropy diboride ceramics via an ultrafast high-temperature synthesis technique that can lead to exceptional mechanical load-bearing capability and high thermal insulation performance. With the construction of multiscale structures involving ultrafine pores at the microscale, high-quality interfaces between building blocks at the nanoscale, and severe lattice distortion at the atomic scale, the materials with an ≈50% porosity exhibit an ultrahigh compressive strength of up to ≈337 MPa at room temperature and a thermal conductivity as low as ≈0.76 W m-1 K-1. More importantly, they demonstrate exceptional thermal stability, with merely ≈2.4% volume shrinkage after 2000 °C annealing. They also show an ultrahigh compressive strength of ≈690 MPa up to 2000 °C, displaying a ductile compressive behavior. The excellent mechanical and thermal insulating properties offer an attractive material for reliable thermal insulation under extreme conditions |
---|---|
Beschreibung: | Date Revised 04.04.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202311870 |