Text2Face : Text-Based Face Generation With Geometry and Appearance Control

Recent years have witnessed the emergence of various techniques proposed for text-based human face generation and manipulation. Such methods, targeting bridging the semantic gap between text and visual contents, provide users with a deft hand to turn ideas into visuals via text interface and enable...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 9 vom: 02. Sept., Seite 6481-6492
1. Verfasser: Zhang, Zhaoyang (VerfasserIn)
Weitere Verfasser: Chen, Junliang, Fu, Hongbo, Zhao, Jianjun, Chen, Shu-Yu, Gao, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM36656434X
003 DE-627
005 20250305152137.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3349050  |2 doi 
028 5 2 |a pubmed25n1221.xml 
035 |a (DE-627)NLM36656434X 
035 |a (NLM)38165798 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Zhaoyang  |e verfasserin  |4 aut 
245 1 0 |a Text2Face  |b Text-Based Face Generation With Geometry and Appearance Control 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent years have witnessed the emergence of various techniques proposed for text-based human face generation and manipulation. Such methods, targeting bridging the semantic gap between text and visual contents, provide users with a deft hand to turn ideas into visuals via text interface and enable more diversified multimedia applications. However, due to the flexibility of linguistic expressiveness, the mapping from sentences to desired facial images is clearly many-to-many, causing ambiguities during text-to-face generation. To alleviate these ambiguities, we introduce a local-to-global framework with two graph neural networks (one for geometry and the other for appearance) embedded to model the inter-dependency among facial parts. This is based upon our key observation that the geometry and appearance attributes among different facial components are not mutually independent, i.e., the combinations of part-level facial features are not arbitrary and thus do not conform to a uniform distribution. By learning from the dataset distribution and enabling recommendations given partial descriptions of human faces, these networks are highly suitable for our text-to-face task. Our method is capable of generating high-quality attribute-conditioned facial images from text. Extensive experiments have confirmed the superiority and usability of our method over the prior art 
650 4 |a Journal Article 
700 1 |a Chen, Junliang  |e verfasserin  |4 aut 
700 1 |a Fu, Hongbo  |e verfasserin  |4 aut 
700 1 |a Zhao, Jianjun  |e verfasserin  |4 aut 
700 1 |a Chen, Shu-Yu  |e verfasserin  |4 aut 
700 1 |a Gao, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 9 vom: 02. Sept., Seite 6481-6492  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:9  |g day:02  |g month:09  |g pages:6481-6492 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3349050  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 9  |b 02  |c 09  |h 6481-6492