An open-source machine-learning approach for obtaining high-quality quantitative wood anatomy data from E. grandis and P. radiata xylem

Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 340(2024) vom: 25. März, Seite 111970
1. Verfasser: Keret, Rafael (VerfasserIn)
Weitere Verfasser: Schliephack, Paul M, Stangler, Dominik F, Seifert, Thomas, Kahle, Hans-Peter, Drew, David M, Hills, Paul N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Cell-detection Hardwood Histology Machine learning Softwood Xylogenesis
LEADER 01000caa a22002652c 4500
001 NLM366542575
003 DE-627
005 20250305151836.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2023.111970  |2 doi 
028 5 2 |a pubmed25n1221.xml 
035 |a (DE-627)NLM366542575 
035 |a (NLM)38163623 
035 |a (PII)S0168-9452(23)00387-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Keret, Rafael  |e verfasserin  |4 aut 
245 1 3 |a An open-source machine-learning approach for obtaining high-quality quantitative wood anatomy data from E. grandis and P. radiata xylem 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.02.2024 
500 |a Date Revised 08.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. 
520 |a Quantitative wood anatomy is a subfield in dendrochronology that requires effective open-source image analysis tools. In this research, the bioimage analysis software QuPath (v0.4.4) is introduced as a candidate for accurately quantifying the cellular properties of the xylem in an automated manner. Additionally, the potential of QuPath to detect the transition of early- to latewood tracheids over the growing season was evaluated to assess a potential application in dendroecological studies. Various algorithms in QuPath were optimized to quantify different xylem cell types in Eucalyptus grandis and the transition of early- to latewood tracheids in Pinus radiata. These algorithms were coded into cell detection scripts for automatic quantification of stem microsections and compared to a manually curated method to assess the accuracy of the cell detections. The automatic cell detection approach, using QuPath, has been validated to be reproducible with an acceptable error when assessing fibers, vessels, early- and latewood tracheids. However, further optimization for parenchyma is still required. This proposed method developed in QuPath provides a scalable and accurate approach for quantifying anatomical features in stem microsections. With minor amendments to the detection and classification algorithms, this strategy is likely to be viable in other plant species 
650 4 |a Journal Article 
650 4 |a Cell-detection 
650 4 |a Hardwood 
650 4 |a Histology 
650 4 |a Machine learning 
650 4 |a Softwood 
650 4 |a Xylogenesis 
700 1 |a Schliephack, Paul M  |e verfasserin  |4 aut 
700 1 |a Stangler, Dominik F  |e verfasserin  |4 aut 
700 1 |a Seifert, Thomas  |e verfasserin  |4 aut 
700 1 |a Kahle, Hans-Peter  |e verfasserin  |4 aut 
700 1 |a Drew, David M  |e verfasserin  |4 aut 
700 1 |a Hills, Paul N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 340(2024) vom: 25. März, Seite 111970  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnas 
773 1 8 |g volume:340  |g year:2024  |g day:25  |g month:03  |g pages:111970 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2023.111970  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 340  |j 2024  |b 25  |c 03  |h 111970