Deep Lossy Plus Residual Coding for Lossless and Near-Lossless Image Compression

Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published me...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 15. Apr., Seite 3577-3594
1. Verfasser: Bai, Yuanchao (VerfasserIn)
Weitere Verfasser: Liu, Xianming, Wang, Kai, Ji, Xiangyang, Wu, Xiaolin, Gao, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM366539574
003 DE-627
005 20240404234534.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3348486  |2 doi 
028 5 2 |a pubmed24n1364.xml 
035 |a (DE-627)NLM366539574 
035 |a (NLM)38163313 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Yuanchao  |e verfasserin  |4 aut 
245 1 0 |a Deep Lossy Plus Residual Coding for Lossless and Near-Lossless Image Compression 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published method offers both lossless and near-lossless modes. In this paper, we propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression. In the lossless mode, the DLPR coding system first performs lossy compression and then lossless coding of residuals. We solve the joint lossy and residual compression problem in the approach of VAEs, and add autoregressive context modeling of the residuals to enhance lossless compression performance. In the near-lossless mode, we quantize the original residuals to satisfy a given ℓ∞ error bound, and propose a scalable near-lossless compression scheme that works for variable ℓ∞ bounds instead of training multiple networks. To expedite the DLPR coding, we increase the degree of algorithm parallelization by a novel design of coding context, and accelerate the entropy coding with adaptive residual interval. Experimental results demonstrate that the DLPR coding system achieves both the state-of-the-art lossless and near-lossless image compression performance with competitive coding speed 
650 4 |a Journal Article 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Wang, Kai  |e verfasserin  |4 aut 
700 1 |a Ji, Xiangyang  |e verfasserin  |4 aut 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
700 1 |a Gao, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 15. Apr., Seite 3577-3594  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:15  |g month:04  |g pages:3577-3594 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3348486  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 15  |c 04  |h 3577-3594