Deep Lossy Plus Residual Coding for Lossless and Near-Lossless Image Compression

Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published me...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 01. Mai, Seite 3577-3594
Auteur principal: Bai, Yuanchao (Auteur)
Autres auteurs: Liu, Xianming, Wang, Kai, Ji, Xiangyang, Wu, Xiaolin, Gao, Wen
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM366539574
003 DE-627
005 20250305151808.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3348486  |2 doi 
028 5 2 |a pubmed25n1221.xml 
035 |a (DE-627)NLM366539574 
035 |a (NLM)38163313 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Yuanchao  |e verfasserin  |4 aut 
245 1 0 |a Deep Lossy Plus Residual Coding for Lossless and Near-Lossless Image Compression 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published method offers both lossless and near-lossless modes. In this paper, we propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression. In the lossless mode, the DLPR coding system first performs lossy compression and then lossless coding of residuals. We solve the joint lossy and residual compression problem in the approach of VAEs, and add autoregressive context modeling of the residuals to enhance lossless compression performance. In the near-lossless mode, we quantize the original residuals to satisfy a given ℓ∞ error bound, and propose a scalable near-lossless compression scheme that works for variable ℓ∞ bounds instead of training multiple networks. To expedite the DLPR coding, we increase the degree of algorithm parallelization by a novel design of coding context, and accelerate the entropy coding with adaptive residual interval. Experimental results demonstrate that the DLPR coding system achieves both the state-of-the-art lossless and near-lossless image compression performance with competitive coding speed 
650 4 |a Journal Article 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Wang, Kai  |e verfasserin  |4 aut 
700 1 |a Ji, Xiangyang  |e verfasserin  |4 aut 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
700 1 |a Gao, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 01. Mai, Seite 3577-3594  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:01  |g month:05  |g pages:3577-3594 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3348486  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 01  |c 05  |h 3577-3594