Atomic-Layer Controlled Transition from Inverse Rashba-Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe2 Probed by THz Spintronic Emission

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 14 vom: 01. Apr., Seite e2304243
1. Verfasser: Abdukayumov, Khasan (VerfasserIn)
Weitere Verfasser: Mičica, Martin, Ibrahim, Fatima, Vojáček, Libor, Vergnaud, Céline, Marty, Alain, Veuillen, Jean-Yves, Mallet, Pierre, de Moraes, Isabelle Gomes, Dosenovic, Djordje, Gambarelli, Serge, Maurel, Vincent, Wright, Adrien, Tignon, Jérôme, Mangeney, Juliette, Ouerghi, Abdelkarim, Renard, Vincent, Mesple, Florie, Li, Jing, Bonell, Frédéric, Okuno, Hanako, Chshiev, Mairbek, George, Jean-Marie, Jaffrès, Henri, Dhillon, Sukhdeep, Jamet, Matthieu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials spintronics spin–orbit coupling terahertz emission
LEADER 01000caa a22002652c 4500
001 NLM366508911
003 DE-627
005 20250305151400.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202304243  |2 doi 
028 5 2 |a pubmed25n1221.xml 
035 |a (DE-627)NLM366508911 
035 |a (NLM)38160244 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Abdukayumov, Khasan  |e verfasserin  |4 aut 
245 1 0 |a Atomic-Layer Controlled Transition from Inverse Rashba-Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe2 Probed by THz Spintronic Emission 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 
520 |a 2D materials, such as transition metal dichalcogenides, are ideal platforms for spin-to-charge conversion (SCC) as they possess strong spin-orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as-grown PtSe2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe2 unaffected, resulting in well-defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness-dependent electronic structure of PtSe2 allows the control of SCC. Indeed, the transition from the inverse Rashba-Edelstein effect (IREE) in 1-3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters 
650 4 |a Journal Article 
650 4 |a 2D materials 
650 4 |a spintronics 
650 4 |a spin–orbit coupling 
650 4 |a terahertz emission 
700 1 |a Mičica, Martin  |e verfasserin  |4 aut 
700 1 |a Ibrahim, Fatima  |e verfasserin  |4 aut 
700 1 |a Vojáček, Libor  |e verfasserin  |4 aut 
700 1 |a Vergnaud, Céline  |e verfasserin  |4 aut 
700 1 |a Marty, Alain  |e verfasserin  |4 aut 
700 1 |a Veuillen, Jean-Yves  |e verfasserin  |4 aut 
700 1 |a Mallet, Pierre  |e verfasserin  |4 aut 
700 1 |a de Moraes, Isabelle Gomes  |e verfasserin  |4 aut 
700 1 |a Dosenovic, Djordje  |e verfasserin  |4 aut 
700 1 |a Gambarelli, Serge  |e verfasserin  |4 aut 
700 1 |a Maurel, Vincent  |e verfasserin  |4 aut 
700 1 |a Wright, Adrien  |e verfasserin  |4 aut 
700 1 |a Tignon, Jérôme  |e verfasserin  |4 aut 
700 1 |a Mangeney, Juliette  |e verfasserin  |4 aut 
700 1 |a Ouerghi, Abdelkarim  |e verfasserin  |4 aut 
700 1 |a Renard, Vincent  |e verfasserin  |4 aut 
700 1 |a Mesple, Florie  |e verfasserin  |4 aut 
700 1 |a Li, Jing  |e verfasserin  |4 aut 
700 1 |a Bonell, Frédéric  |e verfasserin  |4 aut 
700 1 |a Okuno, Hanako  |e verfasserin  |4 aut 
700 1 |a Chshiev, Mairbek  |e verfasserin  |4 aut 
700 1 |a George, Jean-Marie  |e verfasserin  |4 aut 
700 1 |a Jaffrès, Henri  |e verfasserin  |4 aut 
700 1 |a Dhillon, Sukhdeep  |e verfasserin  |4 aut 
700 1 |a Jamet, Matthieu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 14 vom: 01. Apr., Seite e2304243  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:14  |g day:01  |g month:04  |g pages:e2304243 
856 4 0 |u http://dx.doi.org/10.1002/adma.202304243  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 14  |b 01  |c 04  |h e2304243