Predicting opinion using deep learning : From burning to sustainable management of organic waste in Indian State of Punjab

In winter season, the burning of crop residues for ease of sowing the next crop, along with industrial emissions and vehicular pollution leads to settling of a thick layer of smog in northern part of India. Therefore, to understand the opinion of farmers regarding sustainable management of organic w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - (2023) vom: 30. Dez., Seite 734242X231219627
1. Verfasser: Singh, Amandeep (VerfasserIn)
Weitere Verfasser: Tiwari, Rupasi, Nagra, Pardeep Singh, Panda, Pratikshya, Kour, Gurpreet, Singh, Bilawal, Kumar, Pranav, Dutt, Triveni
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Crop residue burning Punjab deep neural network feed-forward opinion
LEADER 01000naa a22002652 4500
001 NLM366494813
003 DE-627
005 20240108140950.0
007 cr uuu---uuuuu
008 240108s2023 xx |||||o 00| ||eng c
024 7 |a 10.1177/0734242X231219627  |2 doi 
028 5 2 |a pubmed24n1246.xml 
035 |a (DE-627)NLM366494813 
035 |a (NLM)38158841 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Singh, Amandeep  |e verfasserin  |4 aut 
245 1 0 |a Predicting opinion using deep learning  |b From burning to sustainable management of organic waste in Indian State of Punjab 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In winter season, the burning of crop residues for ease of sowing the next crop, along with industrial emissions and vehicular pollution leads to settling of a thick layer of smog in northern part of India. Therefore, to understand the opinion of farmers regarding sustainable management of organic waste, the present study was conducted in Ludhiana district of Indian state of Punjab. An ex post facto research design was used and a total of 800 dairy farmers having significant crop area were selected randomly for the study, grouped equally as small and large dairy farmers. Results revealed that majority of farmers had a highly favourable opinion regarding organic waste management due to the fact that they were aware of the ill-effects of undesirable practices like crop residue burning. Further, to predict the farmers' opinion and the effect of independent variables on farmers' opinion, a multi-layer perceptron feed-forward deep neural network was developed with mean squared error of 0.036 and 0.137 for validation and training data sets respectively, marking a novel approach of analysing farmers' behaviour. The neural network highlighted that with increase in the magnitude of input variables, namely, education, experience in dairying, information source utilisation, knowledge regarding organic waste management, etc., the farmers' opinion regarding sustainable waste management increases. The study concluded with the impression that cognitive processes like education, information and knowledge play a significant role in forming the opinion of the farmers. Therefore, efforts focusing on enhancing cognition should be made for sustainable management of organic waste 
650 4 |a Journal Article 
650 4 |a Crop residue burning 
650 4 |a Punjab 
650 4 |a deep neural network 
650 4 |a feed-forward 
650 4 |a opinion 
700 1 |a Tiwari, Rupasi  |e verfasserin  |4 aut 
700 1 |a Nagra, Pardeep Singh  |e verfasserin  |4 aut 
700 1 |a Panda, Pratikshya  |e verfasserin  |4 aut 
700 1 |a Kour, Gurpreet  |e verfasserin  |4 aut 
700 1 |a Singh, Bilawal  |e verfasserin  |4 aut 
700 1 |a Kumar, Pranav  |e verfasserin  |4 aut 
700 1 |a Dutt, Triveni  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA  |d 1991  |g (2023) vom: 30. Dez., Seite 734242X231219627  |w (DE-627)NLM098164791  |x 1096-3669  |7 nnns 
773 1 8 |g year:2023  |g day:30  |g month:12  |g pages:734242X231219627 
856 4 0 |u http://dx.doi.org/10.1177/0734242X231219627  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 30  |c 12  |h 734242X231219627