Visualizing and Understanding Contrastive Learning

Contrastive learning has revolutionized the field of computer vision, learning rich representations from unlabeled data, which generalize well to diverse vision tasks. Consequently, it has become increasingly important to explain these approaches and understand their inner workings mechanisms. Given...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 29. Dez.
1. Verfasser: Sammani, Fawaz (VerfasserIn)
Weitere Verfasser: Joukovsky, Boris, Deligiannis, Nikos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM36648110X
003 DE-627
005 20240108140933.0
007 cr uuu---uuuuu
008 240108s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3346295  |2 doi 
028 5 2 |a pubmed24n1246.xml 
035 |a (DE-627)NLM36648110X 
035 |a (NLM)38157461 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sammani, Fawaz  |e verfasserin  |4 aut 
245 1 0 |a Visualizing and Understanding Contrastive Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Contrastive learning has revolutionized the field of computer vision, learning rich representations from unlabeled data, which generalize well to diverse vision tasks. Consequently, it has become increasingly important to explain these approaches and understand their inner workings mechanisms. Given that contrastive models are trained with interdependent and interacting inputs and aim to learn invariance through data augmentation, the existing methods for explaining single-image systems (e.g., image classification models) are inadequate as they fail to account for these factors and typically assume independent inputs. Additionally, there is a lack of evaluation metrics designed to assess pairs of explanations, and no analytical studies have been conducted to investigate the effectiveness of different techniques used to explaining contrastive learning. In this work, we design visual explanation methods that contribute towards understanding similarity learning tasks from pairs of images. We further adapt existing metrics, used to evaluate visual explanations of image classification systems, to suit pairs of explanations and evaluate our proposed methods with these metrics. Finally, we present a thorough analysis of visual explainability methods for contrastive learning, establish their correlation with downstream tasks and demonstrate the potential of our approaches to investigate their merits and drawbacks 
650 4 |a Journal Article 
700 1 |a Joukovsky, Boris  |e verfasserin  |4 aut 
700 1 |a Deligiannis, Nikos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2023) vom: 29. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:29  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3346295  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 29  |c 12