|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM36647085X |
003 |
DE-627 |
005 |
20240213232718.0 |
007 |
cr uuu---uuuuu |
008 |
240108s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c03529
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1290.xml
|
035 |
|
|
|a (DE-627)NLM36647085X
|
035 |
|
|
|a (NLM)38156439
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zheng, Xingqun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Electronic Structure Effect of PtCo Alloy with Adjustable Compositions for Efficient Methanol Electrooxidation
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 13.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Various efficient strategies have been developed to overcome the anodic electrocatalyst issue of methanol-based fuel cells owing to their complicated methanol electrooxidation mechanism. In this work, PtCo nanoparticles with adjustable compositions supported on multiwalled carbon nanotubes (Pt1Cox/MWCNTs) through the adsorbing-coating-annealing-etching route were synthesized. Compared with the Pt/C catalyst, Pt1Co3/MWCNTs exhibit better electrocatalytic MOR activity in both activity and durability. Notably, the electrochemical mass and specific activity of the as-prepared catalyst are 1.04 mA μg-1Pt and 2.18 mA cm-2, respectively, which are higher than those of the Pt/C catalyst. Moreover, the as-prepared sample revealed lower onset potential during the CO stripping test. Furthermore, the Pt1Co3/MWCNTs possess a lower current density decrease rate in chronoamperometry and cyclic durability tests. The enhancement of activity and stability of Pt1Co3/MWCNTs could be ascribed to their ordered morphological structure, the electronic interaction between MWCNTs and PtCo nanoparticles, and the suitable electronic structure effect between Pt/Co ratios. The concept of the catalyst design in this study offers a different guideline for constructing the novel methanol electrooxidation catalyst, which will accelerate the widespread fuel cell practical application
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Wang, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Bingzhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Qingmei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Shun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1999
|g 40(2024), 6 vom: 13. Feb., Seite 3117-3124
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2024
|g number:6
|g day:13
|g month:02
|g pages:3117-3124
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c03529
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2024
|e 6
|b 13
|c 02
|h 3117-3124
|