Rich Action-Semantic Consistent Knowledge for Early Action Prediction

Early action prediction (EAP) aims to recognize human actions from a part of action execution in ongoing videos, which is an important task for many practical applications. Most prior works treat partial or full videos as a whole, ignoring rich action knowledge hidden in videos, i.e., semantic consi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 28., Seite 479-492
1. Verfasser: Liu, Xiaoli (VerfasserIn)
Weitere Verfasser: Yin, Jianqin, Guo, Di, Liu, Huaping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36644476X
003 DE-627
005 20240114233109.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3345737  |2 doi 
028 5 2 |a pubmed24n1253.xml 
035 |a (DE-627)NLM36644476X 
035 |a (NLM)38153821 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiaoli  |e verfasserin  |4 aut 
245 1 0 |a Rich Action-Semantic Consistent Knowledge for Early Action Prediction 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Early action prediction (EAP) aims to recognize human actions from a part of action execution in ongoing videos, which is an important task for many practical applications. Most prior works treat partial or full videos as a whole, ignoring rich action knowledge hidden in videos, i.e., semantic consistencies among different partial videos. In contrast, we partition original partial or full videos to form a new series of partial videos and mine the Action-Semantic Consistent Knowledge (ASCK) among these new partial videos evolving in arbitrary progress levels. Moreover, a novel Rich Action-semantic Consistent Knowledge network (RACK) under the teacher-student framework is proposed for EAP. Firstly, we use a two-stream pre-trained model to extract features of videos. Secondly, we treat the RGB or flow features of the partial videos as nodes and their action semantic consistencies as edges. Next, we build a bi-directional semantic graph for the teacher network and a single-directional semantic graph for the student network to model rich ASCK among partial videos. The MSE and MMD losses are incorporated as our distillation loss to enrich the ASCK of partial videos from the teacher to the student network. Finally, we obtain the final prediction by summering the logits of different subnetworks and applying a softmax layer. Extensive experiments and ablative studies have been conducted, demonstrating the effectiveness of modeling rich ASCK for EAP. With the proposed RACK, we have achieved state-of-the-art performance on three benchmarks. The code is available at https://github.com/lily2lab/RACK.git 
650 4 |a Journal Article 
700 1 |a Yin, Jianqin  |e verfasserin  |4 aut 
700 1 |a Guo, Di  |e verfasserin  |4 aut 
700 1 |a Liu, Huaping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 28., Seite 479-492  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:28  |g pages:479-492 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3345737  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 28  |h 479-492