Computational Modulation in Electronic Structures of Halide Perovskites via Element/Dopant/Phase

This study employs computational chemistry to investigate the electronic properties of halide perovskite materials, focusing on structural frameworks, elemental composition, surface engineering, and defect engineering. The tetragonal phase generally exhibits higher band gaps than the cubic phase due...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 1 vom: 09. Jan., Seite 221-229
1. Verfasser: Choi, Jae Won (VerfasserIn)
Weitere Verfasser: Kim, Ki Chul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This study employs computational chemistry to investigate the electronic properties of halide perovskite materials, focusing on structural frameworks, elemental composition, surface engineering, and defect engineering. The tetragonal phase generally exhibits higher band gaps than the cubic phase due to conduction band differences, with LiPbCl3 showing the greatest band gap difference. The ionic radius of the A element influences band gaps for both phases, with Cs having the highest impact. Surface engineering significantly affects the electronic properties, and surface direction and composition play vital roles in determining band gaps. Defect engineering induces semiconducting-to-metallic transitions, impacting band gaps. Understanding these core variables is crucial for tailoring the electronic properties of halide perovskites for photovoltaic and optoelectronic applications
Beschreibung:Date Revised 10.01.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02376