Reconstructing Randomly Masked Spectra Helps DNNs Identify Discriminant Wavenumbers

Nondestructive detection methods, based on vibrational spectroscopy, are vitally important in a wide range of applications including industrial chemistry, pharmacy and national defense. Recently, deep learning has been introduced into vibrational spectroscopy showing great potential. Different from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 17. Mai, Seite 3845-3861
1. Verfasser: Wu, Yingying (VerfasserIn)
Weitere Verfasser: Liu, Jinchao, Wang, Yan, Gibson, Stuart, Osadchy, Margarita, Fang, Yongchun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM366409999
003 DE-627
005 20250305150003.0
007 cr uuu---uuuuu
008 231229s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3347617  |2 doi 
028 5 2 |a pubmed25n1220.xml 
035 |a (DE-627)NLM366409999 
035 |a (NLM)38150338 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yingying  |e verfasserin  |4 aut 
245 1 0 |a Reconstructing Randomly Masked Spectra Helps DNNs Identify Discriminant Wavenumbers 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Nondestructive detection methods, based on vibrational spectroscopy, are vitally important in a wide range of applications including industrial chemistry, pharmacy and national defense. Recently, deep learning has been introduced into vibrational spectroscopy showing great potential. Different from images, text, etc. that offer large labeled data sets, vibrational spectroscopic data is very limited, which requires novel concepts beyond transfer and meta learning. To tackle this, we propose a task-enhanced augmentation network (TeaNet). The key component of TeaNet is a reconstruction module that inputs randomly masked spectra and outputs reconstructed samples that are similar to the original ones, but include additional variations learned from the domain. These augmented samples are used to train the classification model. The reconstruction and prediction parts are trained simultaneously, end-to-end with back-propagation. Results on both synthetic and real-world datasets verified the superiority of the proposed method. In the most difficult synthetic scenarios TeaNet outperformed CNN by 17%. We visualized and analysed the neuron responses of TeaNet and CNN, and found that TeaNet's ability to identify discriminant wavenumbers was excellent compared to CNN. Our approach is general and can be easily adapted to other domains, offering a solution to more accurate and interpretable few-shot learning 
650 4 |a Journal Article 
700 1 |a Liu, Jinchao  |e verfasserin  |4 aut 
700 1 |a Wang, Yan  |e verfasserin  |4 aut 
700 1 |a Gibson, Stuart  |e verfasserin  |4 aut 
700 1 |a Osadchy, Margarita  |e verfasserin  |4 aut 
700 1 |a Fang, Yongchun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 17. Mai, Seite 3845-3861  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:17  |g month:05  |g pages:3845-3861 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3347617  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 17  |c 05  |h 3845-3861