Facial Prior Guided Micro-Expression Generation

This paper focuses on the facial micro-expression (FME) generation task, which has potential application in enlarging digital FME datasets, thereby alleviating the lack of training data with labels in existing micro-expression datasets. Despite obvious progress in the image animation task, FME gener...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 10., Seite 525-540
1. Verfasser: Zhang, Yi (VerfasserIn)
Weitere Verfasser: Xu, Xinhua, Zhao, Youjun, Wen, Yuhang, Tang, Zixuan, Liu, Mengyuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM366409913
003 DE-627
005 20240114233512.0
007 cr uuu---uuuuu
008 231229s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3345177  |2 doi 
028 5 2 |a pubmed24n1255.xml 
035 |a (DE-627)NLM366409913 
035 |a (NLM)38150346 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yi  |e verfasserin  |4 aut 
245 1 0 |a Facial Prior Guided Micro-Expression Generation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.01.2024 
500 |a Date Revised 10.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper focuses on the facial micro-expression (FME) generation task, which has potential application in enlarging digital FME datasets, thereby alleviating the lack of training data with labels in existing micro-expression datasets. Despite obvious progress in the image animation task, FME generation remains challenging because existing image animation methods can hardly encode subtle and short-term facial motion information. To this end, we present a facial-prior-guided FME generation framework that takes advantage of facial priors for facial motion generation. Specifically, we first estimate the geometric locations of action units (AUs) with detected facial landmarks. We further calculate an adaptive weighted prior (AWP) map, which alleviates the estimation error of AUs while efficiently capturing subtle facial motion patterns. To achieve smooth and realistic synthesis results, we use our proposed facial prior module to guide motion representation and generation modules in mainstream image animation frameworks. Extensive experiments on three benchmark datasets consistently show that our proposed facial prior module can be adopted in image animation frameworks and significantly improve their performance on micro-expression generation. Moreover, we use the generation technique to enlarge existing datasets, thereby improving the performance of general action recognition backbones on the FME recognition task. Our code is available at https://github.com/sysu19351158/FPB-FOMM 
650 4 |a Journal Article 
700 1 |a Xu, Xinhua  |e verfasserin  |4 aut 
700 1 |a Zhao, Youjun  |e verfasserin  |4 aut 
700 1 |a Wen, Yuhang  |e verfasserin  |4 aut 
700 1 |a Tang, Zixuan  |e verfasserin  |4 aut 
700 1 |a Liu, Mengyuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 10., Seite 525-540  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:10  |g pages:525-540 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3345177  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 10  |h 525-540