A Customizable Proteinic Bioadhesive Patch with Water-Switchable Underwater Adhesiveness, Adjustable Biodegradability, and Modifiable Stretchability for Healing Diverse Internal Wounds

© 2023 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 13 vom: 02. März, Seite e2310338
1. Verfasser: Yang, Jang Woo (VerfasserIn)
Weitere Verfasser: Song, Kang-Il, Lee, Jaeyun, Park, Sungho, Huh, Hyungkyu, Choi, Geunho, Shin, Hwa Hui, Cha, Hyung Joon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bioadhesive patch controllable biodegradability customizable bioadhesive internal wound healing mussel adhesive protein methacrylic acid 1CS02G8656 Water 059QF0KO0R mehr... Adhesives Biocompatible Materials Hydrogels Methacrylates
Beschreibung
Zusammenfassung:© 2023 Wiley‐VCH GmbH.
Customizable bioadhesives for individual organ requirements, including tissue type and motion, are essential, especially given the rise in implantable medical device applications demanding adequate underwater adhesion. While synthetic bioadhesives are widely used, their toxicity upon degradation shifts focus to biocompatible natural biomaterials. However, enhancing the adhesive strengths of these biomaterials presents ongoing challenges while accommodating the unique properties of specific organs. To address these issues, three types of customized underwater bioadhesive patches (CUBAPs) with strong, water-responsive adhesion and controllable biodegradability and stretchability based on bioengineered mussel adhesive proteins conjugated with acrylic acid and/or methacrylic acid are proposed. The CUBAP system, although initially nonadhesive, shows strong underwater adhesion upon hydration, adjustable biodegradation, and adequate physical properties by adjusting the ratio of poly(acrylic acid) and poly(methacrylic acid). Through ex vivo and in vivo evaluations using defective organs and the implantation of electronic devices, the suitability of using CUBAPs for effective wound healing in diverse internal organs is demonstrated. Thus, this innovative CUBAP system offers strong underwater adhesiveness with tailored biodegradation timing and physical properties, giving it great potential in various biomedical applications
Beschreibung:Date Completed 29.03.2024
Date Revised 29.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202310338