|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM366362798 |
003 |
DE-627 |
005 |
20240329000316.0 |
007 |
cr uuu---uuuuu |
008 |
231227s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202310052
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1353.xml
|
035 |
|
|
|a (DE-627)NLM366362798
|
035 |
|
|
|a (NLM)38145615
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhao, Zhiqiang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Enhanced Electron Delocalization within Coherent Nano-Heterocrystal Ensembles for Optimizing Polysulfide Conversion in High-Energy-Density Li-S Batteries
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley‐VCH GmbH.
|
520 |
|
|
|a Commercialization of high energy density Lithium-Sulfur (Li-S) batteries is impeded by challenges such as polysulfide shuttling, sluggish reaction kinetics, and limited Li+ transport. Herein, a jigsaw-inspired catalyst design strategy that involves in situ assembly of coherent nano-heterocrystal ensembles (CNEs) to stabilize high-activity crystal facets, enhance electron delocalization, and reduce associated energy barriers is proposed. On the catalyst surface, the stabilized high-activity facets induce polysulfide aggregation. Simultaneously, the surrounded surface facets with enhanced activity promote Li2S deposition and Li+ diffusion, synergistically facilitating continuous and efficient sulfur redox. Experimental and DFT computations results reveal that the dual-component hetero-facet design alters the coordination of Nb atoms, enabling the redistribution of 3D orbital electrons at the Nb center and promoting d-p hybridization with sulfur. The CNE, based on energy level gradient and lattice matching, endows maximum electron transfer to catalysts and establishes smooth pathways for ion diffusion. Encouragingly, the NbN-NbC-based pouch battery delivers a Weight energy density of 357 Wh kg-1, thereby demonstrating the practical application value of CNEs. This work unveils a novel paradigm for designing high-performance catalysts, which has the potential to shape future research on electrocatalysts for energy storage applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a catalytic conversion
|
650 |
|
4 |
|a coherent nano‐heterocrystal
|
650 |
|
4 |
|a electron delocalization
|
650 |
|
4 |
|a lithium‐sulfur battery
|
650 |
|
4 |
|a polysulfide adsorption
|
700 |
1 |
|
|a Pan, Yukun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yi, Shan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Zhe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Hongli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Yanan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Niu, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Long, Donghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yayun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 13 vom: 28. März, Seite e2310052
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:13
|g day:28
|g month:03
|g pages:e2310052
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202310052
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 13
|b 28
|c 03
|h e2310052
|