Cross-Wired Memristive Crossbar Array for Effective Graph Data Analysis

© 2023 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 13 vom: 27. März, Seite e2311040
1. Verfasser: Jang, Yoon Ho (VerfasserIn)
Weitere Verfasser: Han, Janguk, Shim, Sung Keun, Cheong, Sunwoo, Lee, Soo Hyung, Han, Joon-Kyu, Hwang, Cheol Seong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article crossbar array cross‐wiring graph data structure protein–protein interaction self‐rectifying memristor
LEADER 01000caa a22002652 4500
001 NLM366362445
003 DE-627
005 20240329000315.0
007 cr uuu---uuuuu
008 231227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202311040  |2 doi 
028 5 2 |a pubmed24n1353.xml 
035 |a (DE-627)NLM366362445 
035 |a (NLM)38145578 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jang, Yoon Ho  |e verfasserin  |4 aut 
245 1 0 |a Cross-Wired Memristive Crossbar Array for Effective Graph Data Analysis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley‐VCH GmbH. 
520 |a Graphs adequately represent the enormous interconnections among numerous entities in big data, incurring high computational costs in analyzing them with conventional hardware. Physical graph representation (PGR) is an approach that replicates the graph within a physical system, allowing for efficient analysis. This study introduces a cross-wired crossbar array (cwCBA), uniquely connecting diagonal and non-diagonal components in a CBA by a cross-wiring process. The cross-wired diagonal cells enable cwCBA to achieve precise PGR and dynamic node state control. For this purpose, a cwCBA is fabricated using Pt/Ta2O5/HfO2/TiN (PTHT) memristor with high on/off and self-rectifying characteristics. The structural and device benefits of PTHT cwCBA for enhanced PGR precision are highlighted, and the practical efficacy is demonstrated for two applications. First, it executes a dynamic path-finding algorithm, identifying the shortest paths in a dynamic graph. PTHT cwCBA shows a more accurate inferred distance and ≈1/3800 lower processing complexity than the conventional method. Second, it analyzes the protein-protein interaction (PPI) networks containing self-interacting proteins, which possess intricate characteristics compared to typical graphs. The PPI prediction results exhibit an average of 30.5% and 21.3% improvement in area under the curve and F1-score, respectively, compared to existing algorithms 
650 4 |a Journal Article 
650 4 |a crossbar array 
650 4 |a cross‐wiring 
650 4 |a graph data structure 
650 4 |a protein–protein interaction 
650 4 |a self‐rectifying memristor 
700 1 |a Han, Janguk  |e verfasserin  |4 aut 
700 1 |a Shim, Sung Keun  |e verfasserin  |4 aut 
700 1 |a Cheong, Sunwoo  |e verfasserin  |4 aut 
700 1 |a Lee, Soo Hyung  |e verfasserin  |4 aut 
700 1 |a Han, Joon-Kyu  |e verfasserin  |4 aut 
700 1 |a Hwang, Cheol Seong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 13 vom: 27. März, Seite e2311040  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:13  |g day:27  |g month:03  |g pages:e2311040 
856 4 0 |u http://dx.doi.org/10.1002/adma.202311040  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 13  |b 27  |c 03  |h e2311040