SENSE : Self-Evolving Learning for Self-Supervised Monocular Depth Estimation

Self-supervised depth estimation methods can achieve competitive performance using only unlabeled monocular videos, but they suffer from the uncertainty of jointly learning depth and pose without any ground truths of both tasks. Supervised framework provides robust and superior performance but is li...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 25., Seite 439-450
Auteur principal: Li, Guanbin (Auteur)
Autres auteurs: Huang, Ricong, Li, Haofeng, You, Zunzhi, Chen, Weikai
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM366362135
003 DE-627
005 20250305145323.0
007 cr uuu---uuuuu
008 231227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3338053  |2 doi 
028 5 2 |a pubmed25n1220.xml 
035 |a (DE-627)NLM366362135 
035 |a (NLM)38145544 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Guanbin  |e verfasserin  |4 aut 
245 1 0 |a SENSE  |b Self-Evolving Learning for Self-Supervised Monocular Depth Estimation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Self-supervised depth estimation methods can achieve competitive performance using only unlabeled monocular videos, but they suffer from the uncertainty of jointly learning depth and pose without any ground truths of both tasks. Supervised framework provides robust and superior performance but is limited by the scope of the labeled data. In this paper, we introduce SENSE, a novel learning paradigm for self-supervised monocular depth estimation that progressively evolves the prediction result using supervised learning, but without requiring labeled data. The key contribution of our approach stems from the novel use of the pseudo labels - the noisy depth estimation from the self-supervised methods. We surprisingly find that a fully supervised depth estimation network trained using the pseudo labels can produce even better results than its "ground truth". To push the envelope further, we then evolve the self-supervised backbone by replacing its depth estimation branch with that fully supervised network. Based on this idea, we devise a comprehensive training pipeline that alternatively enhances the two key branches (depth and pose estimation) of the self-supervised backbone network. Our proposed approach can effectively ease the difficulty of multi-task training in self-supervised depth estimation. Experimental results have shown that our proposed approach achieves state-of-the-art results on the KITTI dataset 
650 4 |a Journal Article 
700 1 |a Huang, Ricong  |e verfasserin  |4 aut 
700 1 |a Li, Haofeng  |e verfasserin  |4 aut 
700 1 |a You, Zunzhi  |e verfasserin  |4 aut 
700 1 |a Chen, Weikai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 25., Seite 439-450  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:25  |g pages:439-450 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3338053  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 25  |h 439-450