MSL-Net : Sharp Feature Detection Network for 3D Point Clouds

As a significant geometric feature of 3D point clouds, sharp features play an important role in shape analysis, 3D reconstruction, registration, localization, etc. Current sharp feature detection methods are still sensitive to the quality of the input point cloud, and the detection performance is af...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 9 vom: 29. Aug., Seite 6433-6446
1. Verfasser: Jiao, Xianhe (VerfasserIn)
Weitere Verfasser: Lv, Chenlei, Yi, Ran, Zhao, Junli, Pan, Zhenkuan, Wu, Zhongke, Liu, Yong-Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM366361821
003 DE-627
005 20240801232648.0
007 cr uuu---uuuuu
008 231227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3346907  |2 doi 
028 5 2 |a pubmed24n1488.xml 
035 |a (DE-627)NLM366361821 
035 |a (NLM)38145513 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiao, Xianhe  |e verfasserin  |4 aut 
245 1 0 |a MSL-Net  |b Sharp Feature Detection Network for 3D Point Clouds 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As a significant geometric feature of 3D point clouds, sharp features play an important role in shape analysis, 3D reconstruction, registration, localization, etc. Current sharp feature detection methods are still sensitive to the quality of the input point cloud, and the detection performance is affected by random noisy points and non-uniform densities. In this paper, using the prior knowledge of geometric features, we propose a Multi-scale Laplace Network (MSL-Net), a new deep-learning-based method based on an intrinsic neighbor shape descriptor, to detect sharp features from 3D point clouds. First, we establish a discrete intrinsic neighborhood of the point cloud based on the Laplacian graph, which reduces the error of local implicit surface estimation. Then, we design a new intrinsic shape descriptor based on the intrinsic neighborhood, combined with enhanced normal extraction and cosine-based field estimation function. Finally, we present the backbone of MSL-Net based on the intrinsic shape descriptor. Benefiting from the intrinsic neighborhood and shape descriptor, our MSL-Net has simple architecture and is capable of establishing accurate feature prediction that satisfies the manifold distribution while avoiding complex intrinsic metric calculations. Extensive experimental results demonstrate that with the multi-scale structure, MSL-Net has a strong analytical ability for local perturbations of point clouds. Compared with state-of-the-art methods, our MSL-Net is more robust and accurate 
650 4 |a Journal Article 
700 1 |a Lv, Chenlei  |e verfasserin  |4 aut 
700 1 |a Yi, Ran  |e verfasserin  |4 aut 
700 1 |a Zhao, Junli  |e verfasserin  |4 aut 
700 1 |a Pan, Zhenkuan  |e verfasserin  |4 aut 
700 1 |a Wu, Zhongke  |e verfasserin  |4 aut 
700 1 |a Liu, Yong-Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 9 vom: 29. Aug., Seite 6433-6446  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:9  |g day:29  |g month:08  |g pages:6433-6446 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3346907  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 9  |b 29  |c 08  |h 6433-6446