Bypassing the Single Junction Limit with Advanced Photovoltaic Architectures

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 14 vom: 05. Apr., Seite e2308578
1. Verfasser: Lüer, Larry (VerfasserIn)
Weitere Verfasser: Peters, Ian Marius, Corre, Vincent M Le, Forberich, Karen, Guldi, Dirk M, Brabec, Christoph J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review Bayesian optimization device photophysics machine learning photon upconversion photovoltaics singlet fission
LEADER 01000caa a22002652 4500
001 NLM366314939
003 DE-627
005 20240405233320.0
007 cr uuu---uuuuu
008 231227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202308578  |2 doi 
028 5 2 |a pubmed24n1366.xml 
035 |a (DE-627)NLM366314939 
035 |a (NLM)38140834 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lüer, Larry  |e verfasserin  |4 aut 
245 1 0 |a Bypassing the Single Junction Limit with Advanced Photovoltaic Architectures 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Multijunction devices and photon up- and down-conversion are prominent concepts aimed at increasing photovoltaic efficiencies beyond the single junction limit. Integrating these concepts into advanced architectures may address long-standing issues such as processing complexity, microstructure control, and resilience against spectral changes of the incoming radiation. However, so far, no models have been established to predict the performance of such integrated architectures. Here, a simulation environment based on Bayesian optimization is presented, that can predict and virtually optimize the electrical performance of multi-junction architectures, both vertical and lateral, in combination with up- and down-conversion materials. Microstructure effects on performance are explicitly considered using machine-learned predictive models from high throughput experimentation on simpler architectures. Two architectures that would surpass the single junction limit of photovoltaic energy conversion at reasonable complexity are identified: a vertical "staggered half octave system," where selective absorption allows the use of 6 different bandgaps, and the lateral "overlapping rainbow system" where selective irradiation allows the use of a narrowband energy acceptor with reduced voltage losses, according to the energy gap law. Both architectures would be highly resilient against spectral changes, in contrast with two terminal multi-junction architectures which are limited by Kirchhoff's law 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Bayesian optimization 
650 4 |a device photophysics 
650 4 |a machine learning 
650 4 |a photon upconversion 
650 4 |a photovoltaics 
650 4 |a singlet fission 
700 1 |a Peters, Ian Marius  |e verfasserin  |4 aut 
700 1 |a Corre, Vincent M Le  |e verfasserin  |4 aut 
700 1 |a Forberich, Karen  |e verfasserin  |4 aut 
700 1 |a Guldi, Dirk M  |e verfasserin  |4 aut 
700 1 |a Brabec, Christoph J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 14 vom: 05. Apr., Seite e2308578  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:14  |g day:05  |g month:04  |g pages:e2308578 
856 4 0 |u http://dx.doi.org/10.1002/adma.202308578  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 14  |b 05  |c 04  |h e2308578