Wet shaking table operating parameters optimization for maximizing metal recovery from incineration bottom ash fine fraction
Copyright © 2023 Elsevier Ltd. All rights reserved.
Veröffentlicht in: | Waste management (New York, N.Y.). - 1999. - 174(2024) vom: 15. Jan., Seite 539-548 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Waste management (New York, N.Y.) |
Schlagworte: | Journal Article Copper Elemental aluminum Incineration bottom ash Municipal solid waste Wet shaking table Coal Ash 789U1901C5 Aluminum CPD4NFA903 mehr... |
Zusammenfassung: | Copyright © 2023 Elsevier Ltd. All rights reserved. Municipal solid waste incineration bottom ash has emerged as a secondary source of valuable metals, including aluminum and copper. Specifically, the fine fraction, with a particle size less than two millimeters, exhibits average grades of 2.5 g/kg for copper and 10.0 g/kg for elemental aluminum. Gravimetric concentration equipment, such as wet shaking tables, is widely used in the mining and recycling industries to concentrate materials based on density. However, the optimization of these devices typically relies on a trial-and-error approach. This paper presents a statistical model that optimizes the crucial working parameters of the wet shaking table for recovering elemental aluminum in a light product mineral matrix and copper in a high-density product. The statistical analysis highlights that upper values of shaking amplitude are beneficial for both the recovery and grade of copper and aluminum in the obtained products. Conversely, variations in other parameters, such as wash water or desk tilt, yield contrasting effects on grade and recovery. By precisely adjusting the working parameters of the device, the analyses demonstrate that copper enrichment of up to 45 times can be achieved in the product smaller than 500 µm and up to 15 times in the 500-2000 µm product, resulting in the recovery of approximately 65 % of the total copper |
---|---|
Beschreibung: | Date Completed 16.01.2024 Date Revised 16.01.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1879-2456 |
DOI: | 10.1016/j.wasman.2023.12.030 |