Patterning of Protein-Sequestered Liquid-Crystal Droplets Using Acoustic Wave Trapping
Development of spatially organized structures and understanding their role in controlling kinetics of multistep chemical reactions are essential for the successful design of efficient systems and devices. While studies that showcase different types of methodologies for the spatial organization of va...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 1 vom: 09. Jan., Seite 871-881 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Horseradish Peroxidase EC 1.11.1.- Glucose Oxidase EC 1.1.3.4 Enzymes, Immobilized |
Zusammenfassung: | Development of spatially organized structures and understanding their role in controlling kinetics of multistep chemical reactions are essential for the successful design of efficient systems and devices. While studies that showcase different types of methodologies for the spatial organization of various colloidal systems are known, design and development of well-defined hierarchical assemblies of liquid-crystal (LC) droplets and subsequent demonstration of biological reactions using such assemblies still remain elusive. Here, we show reversible and reconfigurable one-dimensional (1D) assemblies of protein-bioconjugate-sequestered monodisperse LC droplets by combining microfluidics with noninvasive acoustic wave trapping technology. Tunable spatial geometries and lattice dimensions can be achieved in an aqueous medium comprising ≈19 or 62 μm LC droplets. Different assemblies of a mixed population of larger and smaller droplets sequestered with glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively, exhibit spatially localized enzyme kinetics with higher initial rates of reaction compared with GOx/HRP cascades implemented in the absence of an acoustic field. This can be attributed to the direct substrate transfer/channeling between the two complementary enzymes in close proximity. Therefore, our study provides an initial step toward the fabrication of LC-based devices for biosensing applications |
---|---|
Beschreibung: | Date Completed 11.01.2024 Date Revised 15.02.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c03031 |