N-Doped Carbon Nanonecklaces with Encapsulated BiOCl Nanoparticles as High-Rate Anodes for Lithium-Ion Batteries

The unique two-dimensional layered structure of BiOCl makes it highly promising for energy storage applications. In this study, we successfully synthesized BiOCl nanoparticles encapsulated in N-doped carbon nanonecklaces (BiOCl NPs/N-CNNs) using well-established electrospinning and solvothermal subs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 1 vom: 09. Jan., Seite 906-914
1. Verfasser: Li, Jintong (VerfasserIn)
Weitere Verfasser: Pei, Cunyuan, Yang, Song, Zhang, Dongmei, Sun, Bing, Shen, Zexiang, Ni, Shibing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM366207695
003 DE-627
005 20250305143205.0
007 cr uuu---uuuuu
008 231227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c03052  |2 doi 
028 5 2 |a pubmed25n1220.xml 
035 |a (DE-627)NLM366207695 
035 |a (NLM)38130111 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jintong  |e verfasserin  |4 aut 
245 1 0 |a N-Doped Carbon Nanonecklaces with Encapsulated BiOCl Nanoparticles as High-Rate Anodes for Lithium-Ion Batteries 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The unique two-dimensional layered structure of BiOCl makes it highly promising for energy storage applications. In this study, we successfully synthesized BiOCl nanoparticles encapsulated in N-doped carbon nanonecklaces (BiOCl NPs/N-CNNs) using well-established electrospinning and solvothermal substitution. As an anode material for lithium-ion batteries, BiOCl NPs/N-CNNs exhibited enhanced rate performance, delivering a capacity of 220.2 mA h g-1 at 8 A g-1. Furthermore, it demonstrated remarkable long cycle stability, retaining a capacity of 200.5 mA h g-1 after 9000 cycles with a discharge rate of 8.0 A g-1. The superior electrochemical performance can be attributed to the stacked layered structure of BiOCl, facilitated by van der Waals force, as well as the ingenious nanonecklace structures. These structures not only provide fast ion diffusion pathways but also enhance electrolyte penetration and offer more active sites for Li+ insertion and extraction. Additionally, the nanonecklace structure prevents the aggregation of nanopolyhedra, promoting the complete reaction of BiOCl with Li+. Moreover, the unique nanopolyhedron structure alleviates the stress caused by the volume expansion of Bi nanoparticles during cycling and reduces the internal resistance of the electrode 
650 4 |a Journal Article 
700 1 |a Pei, Cunyuan  |e verfasserin  |4 aut 
700 1 |a Yang, Song  |e verfasserin  |4 aut 
700 1 |a Zhang, Dongmei  |e verfasserin  |4 aut 
700 1 |a Sun, Bing  |e verfasserin  |4 aut 
700 1 |a Shen, Zexiang  |e verfasserin  |4 aut 
700 1 |a Ni, Shibing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 40(2024), 1 vom: 09. Jan., Seite 906-914  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:40  |g year:2024  |g number:1  |g day:09  |g month:01  |g pages:906-914 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c03052  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 1  |b 09  |c 01  |h 906-914