KD-INR : Time-Varying Volumetric Data Compression via Knowledge Distillation-Based Implicit Neural Representation

Traditional deep learning algorithms assume that all data is available during training, which presents challenges when handling large-scale time-varying data. To address this issue, we propose a data reduction pipeline called knowledge distillation-based implicit neural representation (KD-INR) for c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 10 vom: 21. Sept., Seite 6826-6838
1. Verfasser: Han, Jun (VerfasserIn)
Weitere Verfasser: Zheng, Hao, Bi, Chongke
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article