Use of bird-borne radar to examine shearwater interactions with legal and illegal fisheries
© 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.
Veröffentlicht in: | Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 38(2024), 3 vom: 30. Mai, Seite e14224 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Conservation biology : the journal of the Society for Conservation Biology |
Schlagworte: | Journal Article AIS Global Fishing Watch IUU Mar Mediterráneo Mediterranean Sea West Africa aves marinas biologging fisheries mehr... |
Zusammenfassung: | © 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. Seabirds interact with fishing vessels to consume fishing discards and baits, sometimes resulting in incidental capture (bycatch) and the death of the bird, which has clear conservation implications. To understand seabird-fishery interactions at large spatiotemporal scales, researchers are increasing their use of simultaneous seabird and fishing vessel tracking. However, vessel tracking data can contain gaps due to technical problems, illicit manipulation, or lack of adoption of tracking monitoring systems. These gaps might lead to underestimating the fishing effort and bycatch rates and jeopardize the effectiveness of marine conservation. We deployed bird-borne radar detector tags capable of recording radar signals from vessels. We placed tags on 88 shearwaters (Calonectris diomedea, Calonectris borealis, and Calonectris edwardsii) that forage in the northwestern Mediterranean Sea and the Canary Current Large Marine Ecosystem. We modeled vessel radar detections registered by the tags in relation to gridded automatic identification system (AIS) vessel tracking data to examine the spatiotemporal dynamics of seabird-vessel interactions and identify unreported fishing activity areas. Our models showed a moderate fit (area under the curve >0.7) to vessel tracking data, indicating a strong association of shearwaters to fishing vessels in major fishing grounds. Although in high-marine-traffic regions, radar detections were also driven by nonfishing vessels. The tags registered the presence of potential unregulated and unreported fishing vessels in West African waters, where merchant shipping is unusual but fishing activity is intense. Overall, bird-borne radar detectors showed areas and periods when the association of seabirds with legal and illegal fishing vessels was high. Bird-borne radar detectors could improve the focus of conservation efforts |
---|---|
Beschreibung: | Date Completed 29.05.2024 Date Revised 29.05.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1523-1739 |
DOI: | 10.1111/cobi.14224 |