|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM366003798 |
003 |
DE-627 |
005 |
20240215231951.0 |
007 |
cr uuu---uuuuu |
008 |
231227s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c02973
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1294.xml
|
035 |
|
|
|a (DE-627)NLM366003798
|
035 |
|
|
|a (NLM)38109683
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhao, Liyang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Enhanced Adsorptive Removal of Tetracycline by Phosphomolybdic Acid-Modified Low-Temperature Sludge Biochar
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.01.2024
|
500 |
|
|
|a Date Revised 15.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Increasing the adsorption capacity and reducing the energy consumption of sludge biochar during preparation is important. In this study, a new modification method was developed to prepare phosphomolybdic acid-modified sludge biochar through the low-temperature pyrolysis of sewage sludge using phosphomolybdic acid as a modifier. Tetracycline was used to assess the adsorption performance of sludge biochar, and phosphomolybdic acid-modified sludge biochar was prepared at different temperatures. The results showed that the adsorption capacity of sludge biochar improved from 84.49 to 120.86 mg/g through modification with phosphomolybdic acid at 200 °C. The maximum adsorption capacities of phosphomolybdic acid-modified sludge biochar (200 °C pyrolysis temperature) at 298, 308, and 318 K were 283.87, 421.39, and 545.48 mg/g, respectively. Both liquid film and intraparticle diffusion were the main rate-limiting steps of tetracycline adsorption by phosphomolybdic acid-modified sludge biochar. Furthermore, the adsorption of tetracycline by phosphomolybdic acid-modified sludge biochar was mainly attributed to π-π interactions, electrostatic interactions, hydrogen bonding, and pore filling
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Sewage
|2 NLM
|
650 |
|
7 |
|a phosphomolybdic acid
|2 NLM
|
650 |
|
7 |
|a RN225F04V1
|2 NLM
|
650 |
|
7 |
|a biochar
|2 NLM
|
650 |
|
7 |
|a Anti-Bacterial Agents
|2 NLM
|
650 |
|
7 |
|a Tetracycline
|2 NLM
|
650 |
|
7 |
|a F8VB5M810T
|2 NLM
|
650 |
|
7 |
|a Charcoal
|2 NLM
|
650 |
|
7 |
|a 16291-96-6
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
700 |
1 |
|
|a Li, Qian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Hengyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Zheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Nan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Honghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xixiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 40(2024), 1 vom: 09. Jan., Seite 751-760
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2024
|g number:1
|g day:09
|g month:01
|g pages:751-760
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c02973
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2024
|e 1
|b 09
|c 01
|h 751-760
|