Ground and excited state charge transfer at aqueous nanodiamonds

© 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 45(2024), 11 vom: 30. Apr., Seite 710-718
Auteur principal: Kirschbaum, Thorren (Auteur)
Autres auteurs: Wang, Xiangfei, Bande, Annika
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article DFT excited states molecular modeling nanodiamonds transfer doping
LEADER 01000caa a22002652c 4500
001 NLM366001582
003 DE-627
005 20250305140911.0
007 cr uuu---uuuuu
008 231227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27279  |2 doi 
028 5 2 |a pubmed25n1219.xml 
035 |a (DE-627)NLM366001582 
035 |a (NLM)38109424 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kirschbaum, Thorren  |e verfasserin  |4 aut 
245 1 0 |a Ground and excited state charge transfer at aqueous nanodiamonds 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a Nanodiamonds (NDs) are unique carbonaceous materials with exceptionally high stability, hardness, and notable electronic properties. Their applications in photocatalysis, biomedicine, and energy materials are usually carried out in aqueous environments, where they interact with aqueous adsorbates. Especially, electron density may rearrange from the diamond material toward oxidative adsorbates such as oxygen, which is known as charge transfer doping. In this article, we quantify the charge transfer doping for NDs with inhomogeneous surface coverings (hydroxyl, fluorine, and amorphous carbon), as well as NDs doped with heteroatoms (B, Si, N) using hybrid density functional theory (DFT) calculations. The transfer doping magnitude is largely determined by the NDs' highest occupied molecular orbital energies, which can in turn be modified by the surface covering and doping. However, local modifications of the ND structures do not have any local effects on the magnitude of the charge transfer. We furthermore analyze the impact of aqueous adsorbates on the excited states of an aqueous ND in the context of photocatalysis via time-dependent DFT. Here, we find that the excited electrons are biased to move in the direction of the respective oxidative adsorbate. Surprisingly, we find that also unreactive species such as nitrous oxide may attract the excited electrons, which is probably due to the positive partial charge that is induced by the local N 2 O solvation geometry 
650 4 |a Journal Article 
650 4 |a DFT 
650 4 |a excited states 
650 4 |a molecular modeling 
650 4 |a nanodiamonds 
650 4 |a transfer doping 
700 1 |a Wang, Xiangfei  |e verfasserin  |4 aut 
700 1 |a Bande, Annika  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 11 vom: 30. Apr., Seite 710-718  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:45  |g year:2024  |g number:11  |g day:30  |g month:04  |g pages:710-718 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27279  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 11  |b 30  |c 04  |h 710-718