Functional Alkali Metal-Based Ternary Chalcogenides : Design, Properties, and Opportunities

© 2023 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 35(2023), 23 vom: 12. Dez., Seite 9833-9846
1. Verfasser: McKeever, Hannah (VerfasserIn)
Weitere Verfasser: Patil, Niraj Nitish, Palabathuni, Manoj, Singh, Shalini
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article Review
Beschreibung
Zusammenfassung:© 2023 The Authors. Published by American Chemical Society.
The search for novel materials has recently brought research attention to alkali metal-based chalcogenides (ABZ) as a new class of semiconducting inorganic materials. Various theoretical and computational studies have highlighted many compositions of this class as ideal functional materials for application in energy conversion and storage devices. This Perspective discusses the expansive compositional landscape of ABZ compositions that inherently gives a wide spectrum of properties with great potential for application. In the present paper, we examine the technique of synthesizing this particular class of materials and explore their potential for compositional engineering in order to manipulate key functional properties. This study presents the notable findings that have been documented thus far in addition to outlining the potential avenues for implementation and the associated challenges they present. By fulfilling the sustainability requirements of being relativity earth-abundant, environmentally benign, and biocompatible, we anticipate a promising future for alkali metal chalcogenides. Through this Perspective, we aim to inspire continued research on this emerging class of materials, thereby enabling forthcoming breakthroughs in the realms of photovoltaics, thermoelectrics, and energy storage
Beschreibung:Date Revised 19.12.2023
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.3c01652