Advancing Near-Infrared Light Sources : Enhancing Chromium Emission through Cation Substitution in Ultra-Broadband Near-Infrared Phosphors

© 2023 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 35(2023), 23 vom: 12. Dez., Seite 10228-10237
1. Verfasser: Majewska, Natalia (VerfasserIn)
Weitere Verfasser: Tsai, Yi-Ting, Zeng, Xiang-Yun, Fang, Mu-Huai, Mahlik, Sebastian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2023 The Authors. Published by American Chemical Society.
The growing interest in the use of near-infrared (NIR) radiation for spectroscopy, optical communication, and medical applications spanning both NIR-I (700-900 nm) and NIR-II (900-1700 nm) has driven the need for new NIR light sources. NIR phosphor-converted light-emitting diodes (pc-LEDs) are expected to replace traditional lamps mainly due to their high efficiency and compact design. Broadband NIR phosphors activated by Cr3+ and Cr4+ have attracted significant research interest, offering emission across a wide range from 700 to 1700 nm. In this work, we synthesized a series of Sc2(1-x)Ga2xO3:Cr3+/4+ materials (x = 0-0.2) with broadband NIR-I (Cr3+) and NIR-II (Cr4+) emission. We observed a substantial increase in the intensity of Cr3+ (approximately 77 times) by incorporating Ga3+ ions. Additionally, our investigation revealed that energy transfer occurred between Cr3+ and Cr4+ ions. Configuration diagrams are presented to elucidate the behavior of Cr3+ and Cr4+ ions within the Sc2O3 matrix. We also observed a phase transition at a pressure of 20.2 GPa, resulting in a new unknown phase where Cr3+ luminescence exhibited a high-symmetry environment. Notably, this study presents the pressure-induced shift of NIR Cr4+ luminescence in Sc2(1-x)Ga2xO3:Cr3+/4+. The linear shifts were estimated at 83 ± 3 and 61 ± 6 cm-1/GPa before and after the phase transition. Overall, our findings shed light on the synthesis, luminescent properties, temperature, and high-pressure behavior within the Sc2(1-x)Ga2xO3:Cr3+/4+ materials. This research contributes to the understanding and potential applications of these materials in the development of efficient NIR light sources and other optical devices
Beschreibung:Date Revised 19.12.2023
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.3c02466