Co-hydrothermal carbonization of microalgae and digested sewage sludge : Assessing the impact of mixing ratios on the composition of primary and secondary char
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
Veröffentlicht in: | Waste management (New York, N.Y.). - 1999. - 174(2024) vom: 15. Jan., Seite 429-438 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Waste management (New York, N.Y.) |
Schlagworte: | Journal Article Chemical composition Co-HTC Hydrochar Mixed feedstocks Thermogravimetric analysis Wastewater treatment by-products Sewage Carbon 7440-44-0 |
Zusammenfassung: | Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. The role of microalgae cultivation in wastewater treatment and reclamation has been studied extensively, as has the potential utility of the resulting algal biomass. Most methods for processing such biomass generate solid residues that must be properly managed to comply with current sustainable resource utilization requirements. Hydrothermal carbonization (HTC) can be used to process both individual wet feedstocks and mixed feedstocks (i.e., co-HTC). Here, we investigate co-HTC using microalgae and digested sewage sludge as feedstocks. The objectives were to (i) study the material's partitioning into solid and liquid products, and (ii) characterize the products' physicochemical properties. Co-HTC experiments were conducted at 180-250°C using mixed microalgae/sewage sludge feedstocks with the proportion of sewage sludge ranging from 0 to 100 %. Analyses of the hydrochar composition and the formation and composition of secondary char revealed that the content of carbonized material in the product decreased as the proportion of sewage sludge in the feedstock increased under fixed carbonization conditions. The properties of the hydrochars and the partitioning of material between the liquid phase and the hydrochar correlated linearly with the proportion of microalgae in mixed feedstocks, indicating that adding sewage sludge to microalgae had weak or non-existent synergistic effects on co-HTC outcomes. However, the proportion of sewage sludge in the feedstock did affect the secondary char. For example, adding sewage sludge reduced the abundance of carboxylic acids and ketones as well as the concentrations of higher molecular weight cholesterols. Such changes may alter the viable applications of the hydrochar |
---|---|
Beschreibung: | Date Completed 16.01.2024 Date Revised 16.01.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1879-2456 |
DOI: | 10.1016/j.wasman.2023.11.039 |