Continuous Melt Spinning of Adaptable Covalently Cross-Linked Self-Healing Ionogel Fibers for Multi-Functional Ionotronics
© 2023 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 13 vom: 01. März, Seite e2310020 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article dynamic covalent bonds electroluminescence ionogel fiber self‐healing triboelectric nanogenerator |
Zusammenfassung: | © 2023 Wiley‐VCH GmbH. Stretchable conductive fibers play key roles in electronic textiles, which have substantial improvements in terms of flexibility, breathability, and comfort. Compared to most existing electron-conductive fibers, ion-conductive fibers are usually soft, stretchable, and transparent, leading to increasing attention. However, the integration of desirable functions including high transparency, stretchability, conductivity, solvent resistance, self-healing ability, processability, and recyclability remains a challenge to be addressed. Herein, a new molecular strategy based on dynamic covalent cross-linking networks is developed to enable continuous melt spinning of the ionogel fiber with the aforementioned properties. As a proof of concept, adaptable covalently cross-linked ionogel fibers based on dimethylglyoximeurethane (DOU) groups (DOU-IG fiber) are prepared. The resultant DOU-IG fiber exhibited high transparency (>93%), tensile strength (0.76 MPa), stretchability (784%), and solvent resistance. Owing to the dynamic of DOU groups, the DOU-IG fiber shows high healing performance using near-infrared light. Taking advantage of DOU-IG fibers, multifunctional ionotronics with the integration of several desirable functionalities including sensor, triboelectric nanogenerator, and electroluminescent display are fabricated and used for motion monitoring, energy harvesting, and human-machine interaction. It is believed that these DOU-IG fibers are promising for fabricating the next generation of electronic textiles and other wearable electronics |
---|---|
Beschreibung: | Date Revised 28.03.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202310020 |