Semi-Supervised Learning for Multi-Label Cardiovascular Diseases Prediction : A Multi-Dataset Study

Electrocardiography (ECG) is a non-invasive tool for predicting cardiovascular diseases (CVDs). Current ECG-based diagnosis systems show promising performance owing to the rapid development of deep learning techniques. However, the label scarcity problem, the co-occurrence of multiple CVDs and the p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 03. Mai, Seite 3305-3320
1. Verfasser: Zhou, Rushuang (VerfasserIn)
Weitere Verfasser: Lu, Lei, Liu, Zijun, Xiang, Ting, Liang, Zhen, Clifton, David A, Dong, Yining, Zhang, Yuan-Ting
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM365867888
003 DE-627
005 20250103231828.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3342828  |2 doi 
028 5 2 |a pubmed24n1650.xml 
035 |a (DE-627)NLM365867888 
035 |a (NLM)38096090 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Rushuang  |e verfasserin  |4 aut 
245 1 0 |a Semi-Supervised Learning for Multi-Label Cardiovascular Diseases Prediction  |b A Multi-Dataset Study 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.04.2024 
500 |a Date Revised 03.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Electrocardiography (ECG) is a non-invasive tool for predicting cardiovascular diseases (CVDs). Current ECG-based diagnosis systems show promising performance owing to the rapid development of deep learning techniques. However, the label scarcity problem, the co-occurrence of multiple CVDs and the poor performance on unseen datasets greatly hinder the widespread application of deep learning-based models. Addressing them in a unified framework remains a significant challenge. To this end, we propose a multi-label semi-supervised model (ECGMatch) to recognize multiple CVDs simultaneously with limited supervision. In the ECGMatch, an ECGAugment module is developed for weak and strong ECG data augmentation, which generates diverse samples for model training. Subsequently, a hyperparameter-efficient framework with neighbor agreement modeling and knowledge distillation is designed for pseudo-label generation and refinement, which mitigates the label scarcity problem. Finally, a label correlation alignment module is proposed to capture the co-occurrence information of different CVDs within labeled samples and propagate this information to unlabeled samples. Extensive experiments on four datasets and three protocols demonstrate the effectiveness and stability of the proposed model, especially on unseen datasets. As such, this model can pave the way for diagnostic systems that achieve robust performance on multi-label CVDs prediction with limited supervision 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lu, Lei  |e verfasserin  |4 aut 
700 1 |a Liu, Zijun  |e verfasserin  |4 aut 
700 1 |a Xiang, Ting  |e verfasserin  |4 aut 
700 1 |a Liang, Zhen  |e verfasserin  |4 aut 
700 1 |a Clifton, David A  |e verfasserin  |4 aut 
700 1 |a Dong, Yining  |e verfasserin  |4 aut 
700 1 |a Zhang, Yuan-Ting  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 03. Mai, Seite 3305-3320  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:03  |g month:05  |g pages:3305-3320 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3342828  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 03  |c 05  |h 3305-3320