Deep learning to overcome Zernike phase-contrast nanoCT artifacts for automated micro-nano porosity segmentation in bone

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 31(2024), Pt 1 vom: 01. Jan., Seite 136-149
1. Verfasser: Silveira, Andreia (VerfasserIn)
Weitere Verfasser: Greving, Imke, Longo, Elena, Scheel, Mario, Weitkamp, Timm, Fleck, Claudia, Shahar, Ron, Zaslansky, Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article Sensor3D model U-Net model X-ray nanotomography Zernike phase contrast computer-aided image segmentation deep learning lacuna-canalicular network
LEADER 01000caa a22002652 4500
001 NLM36586367X
003 DE-627
005 20240203231923.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577523009852  |2 doi 
028 5 2 |a pubmed24n1279.xml 
035 |a (DE-627)NLM36586367X 
035 |a (NLM)38095668 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Silveira, Andreia  |e verfasserin  |4 aut 
245 1 0 |a Deep learning to overcome Zernike phase-contrast nanoCT artifacts for automated micro-nano porosity segmentation in bone 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.01.2024 
500 |a Date Revised 03.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a open access. 
520 |a Bone material contains a hierarchical network of micro- and nano-cavities and channels, known as the lacuna-canalicular network (LCN), that is thought to play an important role in mechanobiology and turnover. The LCN comprises micrometer-sized lacunae, voids that house osteocytes, and submicrometer-sized canaliculi that connect bone cells. Characterization of this network in three dimensions is crucial for many bone studies. To quantify X-ray Zernike phase-contrast nanotomography data, deep learning is used to isolate and assess porosity in artifact-laden tomographies of zebrafish bones. A technical solution is proposed to overcome the halo and shade-off domains in order to reliably obtain the distribution and morphology of the LCN in the tomographic data. Convolutional neural network (CNN) models are utilized with increasing numbers of images, repeatedly validated by `error loss' and `accuracy' metrics. U-Net and Sensor3D CNN models were trained on data obtained from two different synchrotron Zernike phase-contrast transmission X-ray microscopes, the ANATOMIX beamline at SOLEIL (Paris, France) and the P05 beamline at PETRA III (Hamburg, Germany). The Sensor3D CNN model with a smaller batch size of 32 and a training data size of 70 images showed the best performance (accuracy 0.983 and error loss 0.032). The analysis procedures, validated by comparison with human-identified ground-truth images, correctly identified the voids within the bone matrix. This proposed approach may have further application to classify structures in volumetric images that contain non-linear artifacts that degrade image quality and hinder feature identification 
650 4 |a Journal Article 
650 4 |a Sensor3D model 
650 4 |a U-Net model 
650 4 |a X-ray nanotomography 
650 4 |a Zernike phase contrast 
650 4 |a computer-aided image segmentation 
650 4 |a deep learning 
650 4 |a lacuna-canalicular network 
700 1 |a Greving, Imke  |e verfasserin  |4 aut 
700 1 |a Longo, Elena  |e verfasserin  |4 aut 
700 1 |a Scheel, Mario  |e verfasserin  |4 aut 
700 1 |a Weitkamp, Timm  |e verfasserin  |4 aut 
700 1 |a Fleck, Claudia  |e verfasserin  |4 aut 
700 1 |a Shahar, Ron  |e verfasserin  |4 aut 
700 1 |a Zaslansky, Paul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 31(2024), Pt 1 vom: 01. Jan., Seite 136-149  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnns 
773 1 8 |g volume:31  |g year:2024  |g number:Pt 1  |g day:01  |g month:01  |g pages:136-149 
856 4 0 |u http://dx.doi.org/10.1107/S1600577523009852  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 31  |j 2024  |e Pt 1  |b 01  |c 01  |h 136-149