Surfactant-Aided Stabilization of Individual Carbon Nanotubes in Water around the Critical Micelle Concentration

Surfactants are widely used to disperse single-walled carbon nanotubes (SWCNTs) and other nanomaterials for liquid-phase processing and characterization. Traditional techniques, however, demand high surfactant concentrations, often in the range of 1-2 wt/v% of the solution. Here, we show that optima...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 1 vom: 09. Jan., Seite 159-169
1. Verfasser: Wang, Peng (VerfasserIn)
Weitere Verfasser: Misra, Rahul Prasanna, Zhang, Chiyu, Blankschtein, Daniel, Wang, YuHuang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365863505
003 DE-627
005 20240114233453.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c02296  |2 doi 
028 5 2 |a pubmed24n1255.xml 
035 |a (DE-627)NLM365863505 
035 |a (NLM)38095654 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Peng  |e verfasserin  |4 aut 
245 1 0 |a Surfactant-Aided Stabilization of Individual Carbon Nanotubes in Water around the Critical Micelle Concentration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Surfactants are widely used to disperse single-walled carbon nanotubes (SWCNTs) and other nanomaterials for liquid-phase processing and characterization. Traditional techniques, however, demand high surfactant concentrations, often in the range of 1-2 wt/v% of the solution. Here, we show that optimal dispersion efficiency can be attained at substantially lower surfactant concentrations of approximately 0.08 wt/v%, near the critical micelle concentration. This unexpected observation is achieved by introducing "bare" nanotubes into water containing the anionic surfactant sodium deoxycholate (DOC) through a superacid-surfactant exchange process that eliminates the need for ultrasonication. Among the diverse ionic surfactants and charged biopolymers explored, DOC exhibits the highest dispersion efficiency, outperforming sodium cholate, a structurally similar bile salt surfactant containing just one additional oxygen atom compared to DOC. Employing all-atomistic molecular dynamics simulations, we unravel that the greater stabilization by DOC arises from its higher binding affinity to nanotubes and a substantially larger free energy barrier that resists nanotube rebundling. Further, we find that this barrier is nonelectrostatic in nature and does not obey the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability, underscoring the important role of nonelectrostatic dispersion and hydration interactions at the nanoscale, even in the case of ionic surfactants like DOC. These molecular insights advance our understanding of surfactant chemistry at the bare nanotube limit and suggest low-energy, surfactant-efficient solution processing of SWCNTs and potentially other nanomaterials 
650 4 |a Journal Article 
700 1 |a Misra, Rahul Prasanna  |e verfasserin  |4 aut 
700 1 |a Zhang, Chiyu  |e verfasserin  |4 aut 
700 1 |a Blankschtein, Daniel  |e verfasserin  |4 aut 
700 1 |a Wang, YuHuang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 40(2024), 1 vom: 09. Jan., Seite 159-169  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:1  |g day:09  |g month:01  |g pages:159-169 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c02296  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 1  |b 09  |c 01  |h 159-169