Binary Graph Convolutional Network With Capacity Exploration

The current success of Graph Neural Networks (GNNs) usually relies on loading the entire attributed graph for processing, which may not be satisfied with limited memory resources, especially when the attributed graph is large. This paper pioneers to propose a Binary Graph Convolutional Network (Bi-G...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 01. Apr., Seite 3031-3046
1. Verfasser: Wang, Junfu (VerfasserIn)
Weitere Verfasser: Guo, Yuanfang, Yang, Liang, Wang, Yunhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365815586
003 DE-627
005 20240404234457.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3342224  |2 doi 
028 5 2 |a pubmed24n1364.xml 
035 |a (DE-627)NLM365815586 
035 |a (NLM)38090833 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Junfu  |e verfasserin  |4 aut 
245 1 0 |a Binary Graph Convolutional Network With Capacity Exploration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The current success of Graph Neural Networks (GNNs) usually relies on loading the entire attributed graph for processing, which may not be satisfied with limited memory resources, especially when the attributed graph is large. This paper pioneers to propose a Binary Graph Convolutional Network (Bi-GCN), which binarizes both the network parameters and input node attributes and exploits binary operations instead of floating-point matrix multiplications for network compression and acceleration. Meanwhile, we also propose a new gradient approximation based back-propagation method to properly train our Bi-GCN. According to the theoretical analysis, our Bi-GCN can reduce the memory consumption by an average of  ∼ 31x for both the network parameters and input data, and accelerate the inference speed by an average of  ∼ 51x, on three citation networks, i.e., Cora, PubMed, and CiteSeer. Besides, we introduce a general approach to generalize our binarization method to other variants of GNNs, and achieve similar efficiencies. Although the proposed Bi-GCN and Bi-GNNs are simple yet efficient, these compressed networks may also possess a potential capacity problem, i.e., they may not have enough storage capacity to learn adequate representations for specific tasks. To tackle this capacity problem, an Entropy Cover Hypothesis is proposed to predict the lower bound of the width of Bi-GNN hidden layers. Extensive experiments have demonstrated that our Bi-GCN and Bi-GNNs can give comparable performances to the corresponding full-precision baselines on seven node classification datasets and verified the effectiveness of our Entropy Cover Hypothesis for solving the capacity problem 
650 4 |a Journal Article 
700 1 |a Guo, Yuanfang  |e verfasserin  |4 aut 
700 1 |a Yang, Liang  |e verfasserin  |4 aut 
700 1 |a Wang, Yunhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 01. Apr., Seite 3031-3046  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:01  |g month:04  |g pages:3031-3046 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3342224  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 01  |c 04  |h 3031-3046