A Fast Alpha-Tree Algorithm for Extreme Dynamic Range Pixel Dissimilarities

The α-tree algorithm is a useful hierarchical representation technique which facilitates comprehension of images such as remote sensing and medical images. Most α-tree algorithms make use of priority queues to process image edges in a correct order, but because traditional priority queues are ineffi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 01. Apr., Seite 3199-3212
1. Verfasser: Ryu, Jiwoo (VerfasserIn)
Weitere Verfasser: Trager, Scott C, Wilkinson, Michael H F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36581556X
003 DE-627
005 20240404234456.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3341721  |2 doi 
028 5 2 |a pubmed24n1364.xml 
035 |a (DE-627)NLM36581556X 
035 |a (NLM)38090831 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ryu, Jiwoo  |e verfasserin  |4 aut 
245 1 2 |a A Fast Alpha-Tree Algorithm for Extreme Dynamic Range Pixel Dissimilarities 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The α-tree algorithm is a useful hierarchical representation technique which facilitates comprehension of images such as remote sensing and medical images. Most α-tree algorithms make use of priority queues to process image edges in a correct order, but because traditional priority queues are inefficient in α-tree algorithms using extreme-dynamic-range pixel dissimilarities, they run slower compared with other related algorithms such as component tree. In this paper, we propose a novel hierarchical heap priority queue algorithm that can process α-tree edges much more efficiently than other state-of-the-art priority queues. Experimental results using 48-bit Sentinel-2 A remotely sensed images and randomly generated images have shown that the proposed hierarchical heap priority queue improved the timings of the flooding α-tree algorithm by replacing the heap priority queue with the proposed queue: 1.68 times in 4-N and 2.41 times in 8-N on Sentinel-2 A images, and 2.56 times and 4.43 times on randomly generated images 
650 4 |a Journal Article 
700 1 |a Trager, Scott C  |e verfasserin  |4 aut 
700 1 |a Wilkinson, Michael H F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 01. Apr., Seite 3199-3212  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:01  |g month:04  |g pages:3199-3212 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3341721  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 01  |c 04  |h 3199-3212