|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM36581556X |
003 |
DE-627 |
005 |
20240404234456.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2023.3341721
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1364.xml
|
035 |
|
|
|a (DE-627)NLM36581556X
|
035 |
|
|
|a (NLM)38090831
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ryu, Jiwoo
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Fast Alpha-Tree Algorithm for Extreme Dynamic Range Pixel Dissimilarities
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 03.04.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The α-tree algorithm is a useful hierarchical representation technique which facilitates comprehension of images such as remote sensing and medical images. Most α-tree algorithms make use of priority queues to process image edges in a correct order, but because traditional priority queues are inefficient in α-tree algorithms using extreme-dynamic-range pixel dissimilarities, they run slower compared with other related algorithms such as component tree. In this paper, we propose a novel hierarchical heap priority queue algorithm that can process α-tree edges much more efficiently than other state-of-the-art priority queues. Experimental results using 48-bit Sentinel-2 A remotely sensed images and randomly generated images have shown that the proposed hierarchical heap priority queue improved the timings of the flooding α-tree algorithm by replacing the heap priority queue with the proposed queue: 1.68 times in 4-N and 2.41 times in 8-N on Sentinel-2 A images, and 2.56 times and 4.43 times on randomly generated images
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Trager, Scott C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wilkinson, Michael H F
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 5 vom: 01. Apr., Seite 3199-3212
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:5
|g day:01
|g month:04
|g pages:3199-3212
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2023.3341721
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 5
|b 01
|c 04
|h 3199-3212
|