Brave the Wind and the Waves : Discovering Robust and Generalizable Graph Lottery Tickets

The training and inference of Graph Neural Networks (GNNs) are costly when scaling up to large-scale graphs. Graph Lottery Ticket (GLT) has presented the first attempt to accelerate GNN inference on large-scale graphs by jointly pruning the graph structure and the model weights. Though promising, GL...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 05. Apr., Seite 3388-3405
1. Verfasser: Wang, Kun (VerfasserIn)
Weitere Verfasser: Liang, Yuxuan, Li, Xinglin, Li, Guohao, Ghanem, Bernard, Zimmermann, Roger, Zhou, Zhengyang, Yi, Huahui, Zhang, Yudong, Wang, Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365815543
003 DE-627
005 20240408232154.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3342184  |2 doi 
028 5 2 |a pubmed24n1369.xml 
035 |a (DE-627)NLM365815543 
035 |a (NLM)38090829 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Kun  |e verfasserin  |4 aut 
245 1 0 |a Brave the Wind and the Waves  |b Discovering Robust and Generalizable Graph Lottery Tickets 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The training and inference of Graph Neural Networks (GNNs) are costly when scaling up to large-scale graphs. Graph Lottery Ticket (GLT) has presented the first attempt to accelerate GNN inference on large-scale graphs by jointly pruning the graph structure and the model weights. Though promising, GLT encounters robustness and generalization issues when deployed in real-world scenarios, which are also long-standing and critical problems in deep learning ideology. In real-world scenarios, the distribution of unseen test data is typically diverse. We attribute the failures on out-of-distribution (OOD) data to the incapability of discerning causal patterns, which remain stable amidst distribution shifts. In traditional spase graph learning, the model performance deteriorates dramatically as the graph/network sparsity exceeds a certain high level. Worse still, the pruned GNNs are hard to generalize to unseen graph data due to limited training set at hand. To tackle these issues, we propose the Resilient Graph Lottery Ticket (RGLT) to find more robust and generalizable GLT in GNNs. Concretely, we reactivate a fraction of weights/edges by instantaneous gradient information at each pruning point. After sufficient pruning, we conduct environmental interventions to extrapolate potential test distribution. Finally, we perform last several rounds of model averages to further improve generalization. We provide multiple examples and theoretical analyses that underpin the universality and reliability of our proposal. Further, RGLT has been experimentally verified across various independent identically distributed (IID) and out-of-distribution (OOD) graph benchmarks 
650 4 |a Journal Article 
700 1 |a Liang, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Li, Xinglin  |e verfasserin  |4 aut 
700 1 |a Li, Guohao  |e verfasserin  |4 aut 
700 1 |a Ghanem, Bernard  |e verfasserin  |4 aut 
700 1 |a Zimmermann, Roger  |e verfasserin  |4 aut 
700 1 |a Zhou, Zhengyang  |e verfasserin  |4 aut 
700 1 |a Yi, Huahui  |e verfasserin  |4 aut 
700 1 |a Zhang, Yudong  |e verfasserin  |4 aut 
700 1 |a Wang, Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 05. Apr., Seite 3388-3405  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:05  |g month:04  |g pages:3388-3405 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3342184  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 05  |c 04  |h 3388-3405