|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM365791768 |
003 |
DE-627 |
005 |
20250305134133.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202310022
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1218.xml
|
035 |
|
|
|a (DE-627)NLM365791768
|
035 |
|
|
|a (NLM)38088447
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Zhexue
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tailoring Graphite into Subnanometer Graphene
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.04.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Within the intersection of materials science and nanoscience/technology, extremely downsized (including quantum-sized and subnanometer-sized) materials attract increasing interest. However, the effective and controllable production of extremely downsized materials through physical strategies remains a great challenge. Herein, an all-physical top-down method for the production of sub-1 nm graphene with completely broken lattice is reported. The graphene subnanometer materials (GSNs) with monolayer structures and lateral sizes of ≈0.5 nm are obtained. Compared with their bulk, nanosheets, and quantum sheets, the intrinsic GSNs present extremely enhanced photoluminescence and nonlinear saturation absorption performances, as well as unique carrier behavior. The non-equilibrium states induced by the entirely exposed and broken, intrinsic lattices in sub-1 nm graphene can be determinative to their extreme performances. This work shows the great potential of broken lattice and provides new insights toward subnanometer materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a broken lattice
|
650 |
|
4 |
|a graphene
|
650 |
|
4 |
|a nonlinear saturation absorption
|
650 |
|
4 |
|a photoluminescence
|
650 |
|
4 |
|a sub‐1 nm
|
700 |
1 |
|
|a Zhang, Yutong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Ce
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Yuexing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zhangqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Xuanping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Liuyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xinfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 15 vom: 10. Apr., Seite e2310022
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:15
|g day:10
|g month:04
|g pages:e2310022
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202310022
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 15
|b 10
|c 04
|h e2310022
|