Ultrahigh Energy Storage in Tungsten Bronze Dielectric Ceramics Through a Weakly Coupled Relaxor Design

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 11 vom: 05. März, Seite e2310559
1. Verfasser: Gao, Yangfei (VerfasserIn)
Weitere Verfasser: Qiao, Wenjing, Lou, Xiaojie, Song, Zizheng, Zhu, Xiaopei, He, Liqiang, Yang, Bian, Hu, Yanhua, Shao, Jinyou, Wang, Danyang, Chen, Zibin, Zhang, Shujun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article dielectric capacitors energy storage relaxor ferroelectrics tetragonal tungsten bronze structure
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Dielectric energy-storage capacitors, known for their ultrafast discharge time and high-power density, find widespread applications in high-power pulse devices. However, ceramics featuring a tetragonal tungsten bronze structure (TTBs) have received limited attention due to their lower energy-storage capacity compared to perovskite counterparts. Herein, a TTBs relaxor ferroelectric ceramic based on the Gd0.03 Ba0.47 Sr0.485-1.5 x Smx Nb2 O6 composition, exhibiting an ultrahigh recoverable energy density of 9 J cm-3 and an efficiency of 84% under an electric field of 660 kV cm-1 is reported. Notably, the energy storage performance of this ceramic shows remarkable stability against frequency, temperature, and cycling electric field. The introduction of Sm3+ doping is found to create weakly coupled polar nanoregions in the Gd0.03 Ba0.47 Sr0.485 Nb2 O6 ceramic. Structural characterizations reveal that the incommensurability parameter increases with higher Sm3+ content, indicative of a highly disordered A-site structure. Simultaneously, the breakdown strength is also enhanced by raising the conduction activation energy, widening the bandgap, and reducing the electric field-induced strain. This work presents a significant improvement on the energy storage capabilities of TTBs-based capacitors, expanding the material choice for high-power pulse device applications
Beschreibung:Date Revised 14.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202310559