Characterization of Water Structure and Phase Behavior within Metal-Organic Nanotubes

Water behavior under nanoconfinement varies significantly from that in the bulk but also depends on the nature of the pore walls. Hybrid compound offers the ideal system to explore water behavior in complex materials, so a model metal-organic nanotube (UMONT) material was utilized to explore the beh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 39(2023), 51 vom: 26. Dez., Seite 18899-18908
1. Verfasser: Jahinge, Tiron H L (VerfasserIn)
Weitere Verfasser: Payne, Maurice K, Unruh, Daniel K, Jayasinghe, Ashini S, Yu, Ping, Forbes, Tori Z
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Water behavior under nanoconfinement varies significantly from that in the bulk but also depends on the nature of the pore walls. Hybrid compound offers the ideal system to explore water behavior in complex materials, so a model metal-organic nanotube (UMONT) material was utilized to explore the behavior of water between 100 and 293 K. Single-crystal X-ray and neutron diffraction revealed the formation of a filled Ice-I arrangement that was previously predicted to only occur under high pressures. 17O NMR spectra suggest that the onset of melting for the water in the UMONT channels occurs at 98 K and the presence of ice-like water up to 293 K, indicating that the complete ice-water transition does not occur before dehydration of the material. Overall, the water behavior differs significantly from hydrophobic single-walled carbon nanotubes indicating precise control over water can be achieved through rational design of hybrid materials
Beschreibung:Date Revised 30.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02786