Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries
© 2023 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 14 vom: 05. Apr., Seite e2311687 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Review lithium‐metal batteries organic molecule polymer solid electrolyte interphase |
Zusammenfassung: | © 2023 Wiley‐VCH GmbH. Lithium-metal batteries (LMBs) with high energy density are becoming increasingly important in global sustainability initiatives. However, uncontrollable dendrite seeds, inscrutable interfacial chemistry, and repetitively formed solid electrolyte interphase (SEI) have severely hindered the advancement of LMBs. Organic molecules have been ingeniously engineered to construct targeted SEI and effectively minimize the above issues. In this review, multiple organic molecules, including polymer, fluorinated molecules, and organosulfur, are comprehensively summarized and insights into how to construct the corresponding elastic, fluorine-rich, and organosulfur-containing SEIs are provided. A variety of meticulously selected cases are analyzed in depth to support the arguments of molecular design in SEI. Specifically, the evolution of organic molecules-derived SEI is discussed and corresponding design principles are proposed, which are beneficial in guiding researchers to understand and architect SEI based on organic molecules. This review provides a design guideline for constructing organic molecule-derived SEI and will inspire more researchers to concentrate on the exploitation of LMBs |
---|---|
Beschreibung: | Date Revised 04.04.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202311687 |