Coalescence-Induced Droplet Jumping for Electro-Thermal Sensing

Jumping droplet condensation, whereby microdroplets (ca. 1-100 μm) coalescing on suitably designed superhydrophobic surfaces jump away from the surface, has recently been shown to have a 10× heat transfer enhancement compared to filmwise condensing surfaces. However, accurate measurements of the con...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - (2023) vom: 11. Dez.
1. Verfasser: Chettiar, Kaushik (VerfasserIn)
Weitere Verfasser: Ghaddar, Dalia, Birbarah, Patrick, Li, Zhaoer, Kim, Moonkyung, Miljkovic, Nenad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365696625
003 DE-627
005 20231229123431.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c02802  |2 doi 
028 5 2 |a pubmed24n1227.xml 
035 |a (DE-627)NLM365696625 
035 |a (NLM)38078869 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chettiar, Kaushik  |e verfasserin  |4 aut 
245 1 0 |a Coalescence-Induced Droplet Jumping for Electro-Thermal Sensing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Jumping droplet condensation, whereby microdroplets (ca. 1-100 μm) coalescing on suitably designed superhydrophobic surfaces jump away from the surface, has recently been shown to have a 10× heat transfer enhancement compared to filmwise condensing surfaces. However, accurate measurements of the condensation heat flux remain a challenge due to the need for low supersaturations (<1.1) to avoid flooding. The low corresponding heat fluxes (<5 W/cm2) can result in temperature noise that exceeds the resolution of the measurement devices. Furthermore, difficulties in electro-thermal measurements such as droplet and surface electrostatic charge arise in applications where direct access to the condensing surface, such as in isolated chambers and small integrated devices, is not possible. Here, we present an optical technique that can determine the experimental electro-thermal parameters of the jumping droplet condensation process with high fidelity through the analysis of jumping droplet trajectories. To measure the heat flux, we observed the experimental trajectories of condensate droplets on superhydrophobic nanostructures and simultaneously matched them in space and time with simulated trajectories using the droplet dynamic equations of motion. Two independent approaches yielded mean heat fluxes of approximately 0.13 W/cm2 with standard deviations ranging from 0.047 to 0.095 W/cm2, a 79% reduction in error when compared with classical energy balance-based heat flux measurements. In addition, we analyzed the trajectories of electrostatically interacting droplets during flight and fitted the simulated and experimental results to achieve spatial and temporal agreement. The effect of image charges on a jumping droplet as it approaches the surface was analyzed, and the observed acceleration has been numerically quantified. Our work presents a sensing methodology of electro-thermal parameters governing jumping droplet condensation 
650 4 |a Journal Article 
700 1 |a Ghaddar, Dalia  |e verfasserin  |4 aut 
700 1 |a Birbarah, Patrick  |e verfasserin  |4 aut 
700 1 |a Li, Zhaoer  |e verfasserin  |4 aut 
700 1 |a Kim, Moonkyung  |e verfasserin  |4 aut 
700 1 |a Miljkovic, Nenad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g (2023) vom: 11. Dez.  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g year:2023  |g day:11  |g month:12 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c02802  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |j 2023  |b 11  |c 12