A novel tetratricopeptide-repeat protein, TTP1, forms complexes with glutamyl-tRNA reductase and protochlorophyllide oxidoreductase during tetrapyrrole biosynthesis

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 75(2024), 7 vom: 27. März, Seite 2027-2045
1. Verfasser: Herbst, Josephine (VerfasserIn)
Weitere Verfasser: Pang, Xiaoqing, Roling, Lena, Grimm, Bernhard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article 5-Aminolevulinic acid synthesis chlorophyll chloroplast biogenesis chloroplast metabolism post-translational control protein–protein interaction tetrapyrrole biosynthesis tetratricopeptide-repeat proteins Arabidopsis Proteins mehr... Protochlorophyllide 20369-67-9 glutamyl tRNA reductase EC 1.2.1.- Aminolevulinic Acid 88755TAZ87 Aldehyde Oxidoreductases EC 1.2.- Chlorophyll 1406-65-1 Tetrapyrroles
Beschreibung
Zusammenfassung:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The biosynthesis of the tetrapyrrole end-products chlorophyll and heme depends on a multifaceted control mechanism that acts primarily at the post-translational level upon the rate-limiting step of 5-aminolevulinic acid synthesis and upon light-dependent protochlorophyllide oxidoreductase (POR). These regulatory processes require auxiliary factors that modulate the activity, stability, complex formation, and subplastidal localization of the relevant proteins. Together, they ensure optimal metabolic flow during the day and at night. As an Arabidopsis homolog of the POR-interacting tetratricopeptide-repeat protein (Pitt) first reported in Synechocystis, we characterize tetrapyrrole biosynthesis-regulating tetratricopeptide-repeat protein1 (TTP1). TTP1 is a plastid-localized, membrane-bound factor that interacts with POR, the Mg protoporphyrin monomethylester cyclase CHL27, glutamyl-tRNA reductase (GluTR), GluTR-binding protein, and FLUORESCENCE IN BLUE LIGHT. Lack of TTP1 leads to accumulation of GluTR, enhanced 5-aminolevulinic acid synthesis and lower levels of POR. Knockout mutants show enhanced sensitivity to reactive oxygen species and a slower greening of etiolated seedlings. Based on our studies, the interaction of TTP1 with GluTR and POR does not directly inhibit their enzymatic activity and contribute to the control of 5-aminolevulinic acid synthesis. Instead, we propose that TTP1 sequesters a fraction of these proteins on the thylakoid membrane, and contributes to their stability
Beschreibung:Date Completed 28.03.2024
Date Revised 29.03.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad491