Integrated machine learning methods with oversampling technique for regional suitability prediction of waste-to-energy incineration projects

Copyright © 2023. Published by Elsevier Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 174(2024) vom: 15. Feb., Seite 251-262
1. Verfasser: Hou, Yali (VerfasserIn)
Weitere Verfasser: Wang, Qunwei, Zhou, Kai, Zhang, Ling, Tan, Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Classification Cross validation Site selection Stacking model Waste management
LEADER 01000caa a22002652c 4500
001 NLM365612596
003 DE-627
005 20250305131946.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2023.12.006  |2 doi 
028 5 2 |a pubmed25n1218.xml 
035 |a (DE-627)NLM365612596 
035 |a (NLM)38070444 
035 |a (PII)S0956-053X(23)00744-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hou, Yali  |e verfasserin  |4 aut 
245 1 0 |a Integrated machine learning methods with oversampling technique for regional suitability prediction of waste-to-energy incineration projects 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.01.2024 
500 |a Date Revised 16.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023. Published by Elsevier Ltd. 
520 |a China's tiered strategy to enhance county-level waste incineration for energy aligns with the sustainable development goals (SDGs), emphasizing the need for comprehensive assessments of waste-to-energy (WtE) plant suitability. Traditional assessment methodologies face challenges, particularly in suggesting innovative site alternatives, adapting to new data sets, and their dependence on strict assumptions. This study introduced enhancements in three pivotal dimensions. Methodologically, it leverages data-driven machine learning (ML) approaches to capture the complex relationships essential for site selection, reducing dependency on strict assumptions. In terms of predictive performance, the integration of oversampling with stacked ensemble models enhances the diversity and generalizability of ML models. The area under curve (AUC) scores from four ML models, enhanced by the oversampled dataset, demonstrated significant improvements compared to the original dataset. The stacking model excelled, achieving a score of 92%. It also led in overall Precision and Recall, reaching 85.2% and 85.08% respectively. Nevertheless, a noticeable discrepancy existed in Precision and Recall for positive classes. The stacking model topped Precision scores at 83.1%, followed by eXtreme Gradient Boosting (XGBoost) (82.61%). In terms of Recall, XGBoost recorded the lowest at 85.07%, while the other three classifiers all marked 88.06%. From an industry applicability standpoint, the stacking model provides innovative location alternatives and demonstrates adaptability in Hunan province, offering a reusable tool for WtE location. In conclusion, this study not only enhances the methodological aspects of WtE site selection but also provides practical and adaptable solutions, contributing positively to sustainable waste management practices 
650 4 |a Journal Article 
650 4 |a Classification 
650 4 |a Cross validation 
650 4 |a Site selection 
650 4 |a Stacking model 
650 4 |a Waste management 
700 1 |a Wang, Qunwei  |e verfasserin  |4 aut 
700 1 |a Zhou, Kai  |e verfasserin  |4 aut 
700 1 |a Zhang, Ling  |e verfasserin  |4 aut 
700 1 |a Tan, Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 174(2024) vom: 15. Feb., Seite 251-262  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:174  |g year:2024  |g day:15  |g month:02  |g pages:251-262 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2023.12.006  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 174  |j 2024  |b 15  |c 02  |h 251-262