Description of six new cyanobacterial species from soil biocrusts on San Nicolas Island, California, in three genera previously restricted to Brazil
© 2023 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.
Veröffentlicht in: | Journal of phycology. - 1966. - 60(2024), 1 vom: 15. Feb., Seite 133-151 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Journal of phycology |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. Atlanticothrix Konicacronema Pycnacronema Brazil San Nicolas Island biological soil crusts cyanobacteria polyphasic approach mehr... |
Zusammenfassung: | © 2023 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America. As the taxonomic knowledge of cyanobacteria from terrestrial environments increases, it remains important to analyze biodiversity in areas that have been understudied to fully understand global and endemic diversity. This study was completed as part of a larger algal biodiversity study of the soil biocrusts of San Nicholas Island, California, USA. Among the taxa isolated were several new species in three genera (Atlanticothrix, Pycnacronema, and Konicacronema) which were described from, and previously restricted to, Brazil. New taxa are described herein using a polyphasic approach to cyanobacterial taxonomy that considers morphological, molecular, ecological, and biogeographical factors. Morphological data corroborated by molecular analysis including sequencing of the 16S rRNA gene, and the associated 16S-23S ITS rRNA region was used to delineate three new species of Atlanticothrix, two species of Pycnacronema, and one species of Konicacronema. The overlap of genera from San Nicolas Island and Brazil suggests that cyanobacterial genera may be widely distributed across global hemispheres, whereas the presence of distinct lineages may indicate that this is not true at the species level. Our data suggest that based upon global wind patterns, cyanobacteria in both Northern and Southern hemispheres of the Americas may have a more recent common ancestor in Northern Africa, but this common ancestry is distant enough that speciation has occurred since transatlantic dispersal |
---|---|
Beschreibung: | Date Completed 19.02.2024 Date Revised 15.04.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1529-8817 |
DOI: | 10.1111/jpy.13411 |