Efficient Dynamic Correspondence Network

We tackle the problem of establishing dense correspondences between a pair of images in an efficient way. Most existing dense matching methods use 4D convolutions to filter incorrect matches, but 4D convolutions are highly inefficient due to their quadratic complexity. Besides, these methods learn f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2023) vom: 08., Seite 228-240
1. Verfasser: He, Jianfeng (VerfasserIn)
Weitere Verfasser: Zhang, Tianzhu, Zhang, Zhe, Yu, Tianyi, Zhang, Yongdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365552100
003 DE-627
005 20231229123032.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3334594  |2 doi 
028 5 2 |a pubmed24n1227.xml 
035 |a (DE-627)NLM365552100 
035 |a (NLM)38064330 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Jianfeng  |e verfasserin  |4 aut 
245 1 0 |a Efficient Dynamic Correspondence Network 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We tackle the problem of establishing dense correspondences between a pair of images in an efficient way. Most existing dense matching methods use 4D convolutions to filter incorrect matches, but 4D convolutions are highly inefficient due to their quadratic complexity. Besides, these methods learn features with fixed convolutions which cannot make learnt features robust to different challenge scenarios. To deal with these issues, we propose an Efficient Dynamic Correspondence Network (EDCNet) by jointly equipping pre-separate convolution (Psconv) and dynamic convolution (Dyconv) to establish dense correspondences in a coarse-to-fine manner. The proposed EDCNet enjoys several merits. First, two well-designed modules including a neighbourhood aggregation (NA) module and a dynamic feature learning (DFL) module are combined elegantly in the coarse-to-fine architecture, which is efficient and effective to establish both reliable and accurate correspondences. Second, the proposed NA module maintains linear complexity, showing its high efficiency. And our proposed DFL module has better flexibility to learn features robust to different challenges. Extensive experimental results show that our algorithm performs favorably against state-of-the-art methods on three challenging datasets including HPatches, Aachen Day-Night and InLoc 
650 4 |a Journal Article 
700 1 |a Zhang, Tianzhu  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhe  |e verfasserin  |4 aut 
700 1 |a Yu, Tianyi  |e verfasserin  |4 aut 
700 1 |a Zhang, Yongdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2023) vom: 08., Seite 228-240  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2023  |g day:08  |g pages:228-240 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3334594  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2023  |b 08  |h 228-240