Cycloaddition reactions via "on water" protocol reactions : A density functional theory study

© 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 10 vom: 15. März, Seite 595-609
1. Verfasser: López-Sosa, L (VerfasserIn)
Weitere Verfasser: Calaminici, P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article ADFT QM/MM cycloaddition reactions deMon2k on water protocol reaction reaction mechanisms
LEADER 01000caa a22002652 4500
001 NLM365453110
003 DE-627
005 20240301232203.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27268  |2 doi 
028 5 2 |a pubmed24n1313.xml 
035 |a (DE-627)NLM365453110 
035 |a (NLM)38054389 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a López-Sosa, L  |e verfasserin  |4 aut 
245 1 0 |a Cycloaddition reactions via "on water" protocol reactions  |b A density functional theory study 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a In this work, the reactions of quadricyclane with dimethyl azodicarboxylate (DMAD) and of quadricyclane with diethyl azodicarboxylate (DEAD) in gas phase and in water environments were studied by a first-principles investigation within the framework of auxiliary density functional theory (ADFT). For these type of organic reactions is known that water is required to accelerate them. Since the reason of why this occur is still unknown, this work aims to gain insight into this reaction mechanism. For this investigation, the generalized gradient approximation as well as a hybrid functional were employed. The obtained optimized structures for the reactants, of the products and of the transition states are reported, together with the corresponding frequency analysis results and the reaction profiles. Along the proposed concerted reaction mechanism, a critical points search of the electron density and a charge analysis were performed. The calculated potential energy barriers of these reactions in gas phase and in water environments are compared. In agreement with experiment, the obtained results indicate that both reactions occur faster in water than in gas phase. This study shows that there is a change in the polarity of the two most important carbon atoms of the formed compounds along the reactions and that the decrease of the activation energy barrier which occurs in liquid phase in these reactions is because the structures of the main transition states are stabilized by the water environment. Therefore, the here obtained results demonstrate the important role played by the water-molecule framework into the activation energy barrier and structures of the molecules that participate in the DMAD and DEAD cycloaddition reactions 
650 4 |a Journal Article 
650 4 |a ADFT 
650 4 |a QM/MM 
650 4 |a cycloaddition reactions 
650 4 |a deMon2k 
650 4 |a on water protocol reaction 
650 4 |a reaction mechanisms 
700 1 |a Calaminici, P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 10 vom: 15. März, Seite 595-609  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:45  |g year:2024  |g number:10  |g day:15  |g month:03  |g pages:595-609 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27268  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 10  |b 15  |c 03  |h 595-609