An Investigation into the Relative Efficacy of High-Velocity Air-Fuel-Sprayed Hydroxyapatite Implants Based on the Crystallinity Index, Residual Stress, Wear, and In-Flight Powder Particle Behavior

Due to its resemblance to the bone, hydroxyapatite (HA) has been widely used for bioactive surface modification of orthopedic implants. However, it undergoes significant thermal decomposition and phase transformations at a high operating temperature, leading to premature implant failure. This invest...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 39(2023), 48 vom: 05. Dez., Seite 17513-17528
1. Verfasser: Jagadeeshanayaka, N (VerfasserIn)
Weitere Verfasser: Kele, Shubham Nitin, Jambagi, Sudhakar C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM365416312
003 DE-627
005 20231226101620.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c02840  |2 doi 
028 5 2 |a pubmed24n1217.xml 
035 |a (DE-627)NLM365416312 
035 |a (NLM)38050681 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jagadeeshanayaka, N  |e verfasserin  |4 aut 
245 1 3 |a An Investigation into the Relative Efficacy of High-Velocity Air-Fuel-Sprayed Hydroxyapatite Implants Based on the Crystallinity Index, Residual Stress, Wear, and In-Flight Powder Particle Behavior 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Due to its resemblance to the bone, hydroxyapatite (HA) has been widely used for bioactive surface modification of orthopedic implants. However, it undergoes significant thermal decomposition and phase transformations at a high operating temperature, leading to premature implant failure. This investigation uses high-velocity air-fuel (HVAF) spray, an emerging low-temperature thermal spray technique, to deposit HA over the Ti-6Al-4V substrate. Coating characteristics, such as the crystallinity index and phase analysis, were measured using X-ray diffraction, Raman analysis, and Fourier transform infrared spectroscopy, residual stress using the sin2ψ method, and tribological performance by a fretting wear test. The coating retained an over 90% crystallinity index, a crystallite size of 41.04 nm, a compressive residual stress of -229 ± 34.5 MPa, and a wear rate of 1.532 × 10-3 mm3 N-1 m-1. Computational in-flight particle traits of HA particles (5 to 60 μm) were analyzed using computational fluid dynamics; it showed that 90% of particles were deposited at a 700 to 1000 m/s velocity and a 900 to 1450 K temperature with a 2.1 ms mean residence time. In-flight particle oxidation was minimized, and particle impact deformation was maximized, which caused severe plastic deformation, forming crystalline, compressive residual stressed coatings. The thermal decomposition model of low-temperature HVAF-sprayed HA particles helped to understand the implants' crystallinity index, residual stress, and tribological characteristics. Hence, this experimental and computational analysis shows that the HVAF process can be a promising candidate for biomedical applications for having strong and durable implants 
650 4 |a Journal Article 
700 1 |a Kele, Shubham Nitin  |e verfasserin  |4 aut 
700 1 |a Jambagi, Sudhakar C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 39(2023), 48 vom: 05. Dez., Seite 17513-17528  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:39  |g year:2023  |g number:48  |g day:05  |g month:12  |g pages:17513-17528 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c02840  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 39  |j 2023  |e 48  |b 05  |c 12  |h 17513-17528