|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM365416312 |
003 |
DE-627 |
005 |
20231226101620.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c02840
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1217.xml
|
035 |
|
|
|a (DE-627)NLM365416312
|
035 |
|
|
|a (NLM)38050681
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jagadeeshanayaka, N
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An Investigation into the Relative Efficacy of High-Velocity Air-Fuel-Sprayed Hydroxyapatite Implants Based on the Crystallinity Index, Residual Stress, Wear, and In-Flight Powder Particle Behavior
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.12.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Due to its resemblance to the bone, hydroxyapatite (HA) has been widely used for bioactive surface modification of orthopedic implants. However, it undergoes significant thermal decomposition and phase transformations at a high operating temperature, leading to premature implant failure. This investigation uses high-velocity air-fuel (HVAF) spray, an emerging low-temperature thermal spray technique, to deposit HA over the Ti-6Al-4V substrate. Coating characteristics, such as the crystallinity index and phase analysis, were measured using X-ray diffraction, Raman analysis, and Fourier transform infrared spectroscopy, residual stress using the sin2ψ method, and tribological performance by a fretting wear test. The coating retained an over 90% crystallinity index, a crystallite size of 41.04 nm, a compressive residual stress of -229 ± 34.5 MPa, and a wear rate of 1.532 × 10-3 mm3 N-1 m-1. Computational in-flight particle traits of HA particles (5 to 60 μm) were analyzed using computational fluid dynamics; it showed that 90% of particles were deposited at a 700 to 1000 m/s velocity and a 900 to 1450 K temperature with a 2.1 ms mean residence time. In-flight particle oxidation was minimized, and particle impact deformation was maximized, which caused severe plastic deformation, forming crystalline, compressive residual stressed coatings. The thermal decomposition model of low-temperature HVAF-sprayed HA particles helped to understand the implants' crystallinity index, residual stress, and tribological characteristics. Hence, this experimental and computational analysis shows that the HVAF process can be a promising candidate for biomedical applications for having strong and durable implants
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kele, Shubham Nitin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jambagi, Sudhakar C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1999
|g 39(2023), 48 vom: 05. Dez., Seite 17513-17528
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:48
|g day:05
|g month:12
|g pages:17513-17528
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c02840
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 48
|b 05
|c 12
|h 17513-17528
|