Nanoscale Meniscus Dynamics in Evaporating Thin Films : Insights from Molecular Dynamics Simulations

Evaporation studies are focused on unraveling heat transfer and flow dynamics near the solid-liquid-vapor contact line, particularly focusing on the meniscus, which encompasses the nonevaporating adsorbed layer, thin-film, and bulk meniscus regions. Continuum models assume that there are no evaporat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 50 vom: 19. Dez., Seite 18499-18508
1. Verfasser: Ozsipahi, Mustafa (VerfasserIn)
Weitere Verfasser: Beskok, Ali
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365395129
003 DE-627
005 20231227134457.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c02830  |2 doi 
028 5 2 |a pubmed24n1232.xml 
035 |a (DE-627)NLM365395129 
035 |a (NLM)38048562 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ozsipahi, Mustafa  |e verfasserin  |4 aut 
245 1 0 |a Nanoscale Meniscus Dynamics in Evaporating Thin Films  |b Insights from Molecular Dynamics Simulations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Evaporation studies are focused on unraveling heat transfer and flow dynamics near the solid-liquid-vapor contact line, particularly focusing on the meniscus, which encompasses the nonevaporating adsorbed layer, thin-film, and bulk meniscus regions. Continuum models assume that there are no evaporating adsorbed layers due to the strong intermolecular forces. However, recent molecular dynamics (MD) simulations have unveiled the significant role of adsorbed layers in thin-film evaporation. Leveraging a recently published energy-based interface detection method, the current study presents nonequilibrium MD simulation results for thin-film evaporation from a phase-change-driven nanopump using liquid argon confined between parallel platinum plates. Notably, unlike the transient simulations often encountered in the literature, the simulation system achieves a statistically steady transport. In this context, we showcase the shapes of the evaporating menisci for two distinct channel heights, 8 and 16 nm, and elucidate the underlying flow physics through velocity vectors and temperature contours. This comprehensive investigation advances our understanding of thin-film evaporation and its mechanisms, offering insights that span from nanoscale phenomena to broader thermal management applications 
650 4 |a Journal Article 
700 1 |a Beskok, Ali  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 39(2023), 50 vom: 19. Dez., Seite 18499-18508  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:39  |g year:2023  |g number:50  |g day:19  |g month:12  |g pages:18499-18508 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c02830  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 39  |j 2023  |e 50  |b 19  |c 12  |h 18499-18508