Deep Supervised Multi-View Learning With Graph Priors

This paper presents a novel method for supervised multi-view representation learning, which projects multiple views into a latent common space while preserving the discrimination and intrinsic structure of each view. Specifically, an apriori discriminant similarity graph is first constructed based o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2023) vom: 13., Seite 123-133
1. Verfasser: Hu, Peng (VerfasserIn)
Weitere Verfasser: Zhen, Liangli, Peng, Xi, Zhu, Hongyuan, Lin, Jie, Wang, Xu, Peng, Dezhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365392030
003 DE-627
005 20231227132208.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3335825  |2 doi 
028 5 2 |a pubmed24n1226.xml 
035 |a (DE-627)NLM365392030 
035 |a (NLM)38048247 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Peng  |e verfasserin  |4 aut 
245 1 0 |a Deep Supervised Multi-View Learning With Graph Priors 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a novel method for supervised multi-view representation learning, which projects multiple views into a latent common space while preserving the discrimination and intrinsic structure of each view. Specifically, an apriori discriminant similarity graph is first constructed based on labels and pairwise relationships of multi-view inputs. Then, view-specific networks progressively map inputs to common representations whose affinity approximates the constructed graph. To achieve graph consistency, discrimination, and cross-view invariance, the similarity graph is enforced to meet the following constraints: 1) pairwise relationship should be consistent between the input space and common space for each view; 2) within-class similarity is larger than any between-class similarity for each view; 3) the inter-view samples from the same (or different) classes are mutually similar (or dissimilar). Consequently, the intrinsic structure and discrimination are preserved in the latent common space using an apriori approximation schema. Moreover, we present a sampling strategy to approach a sub-graph sampled from the whole similarity structure instead of approximating the graph of the whole dataset explicitly, thus benefiting lower space complexity and the capability of handling large-scale multi-view datasets. Extensive experiments show the promising performance of our method on five datasets by comparing it with 18 state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Zhen, Liangli  |e verfasserin  |4 aut 
700 1 |a Peng, Xi  |e verfasserin  |4 aut 
700 1 |a Zhu, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Lin, Jie  |e verfasserin  |4 aut 
700 1 |a Wang, Xu  |e verfasserin  |4 aut 
700 1 |a Peng, Dezhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2023) vom: 13., Seite 123-133  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2023  |g day:13  |g pages:123-133 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3335825  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2023  |b 13  |h 123-133